login
Search: a000009 -id:a000009
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = Sum_{ d divides n } q(d), where q(d) = A000009 = number of partitions of d into distinct parts.
+20
143
1, 2, 3, 4, 4, 8, 6, 10, 11, 15, 13, 25, 19, 29, 33, 42, 39, 62, 55, 81, 84, 103, 105, 153, 146, 185, 203, 253, 257, 344, 341, 432, 463, 552, 594, 747, 761, 920, 1003, 1200, 1261, 1537, 1611, 1921, 2089, 2410, 2591, 3095, 3270, 3815, 4138, 4769, 5121, 5972, 6394, 7367, 7974, 9066, 9793, 11305, 12077, 13736, 14940
OFFSET
1,2
COMMENTS
Number of partitions of n such that every part occurs with the same multiplicity. - Vladeta Jovovic, Oct 22 2004
Christopher and Christober call such partitions uniform. - Gus Wiseman, Apr 16 2018
Equals inverse Mobius transform (A051731) * A000009, where the latter begins (1, 1, 2, 2, 3, 4, 5, 6, 8, ...). - Gary W. Adamson, Jun 08 2009
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
A. David Christopher and M. Davamani Christober, Relatively Prime Uniform Partitions, Gen. Math. Notes, Vol. 13, No. 2, December, 2012, pp.1-12.
FORMULA
G.f.: Sum_{k>0} (-1+Product_{i>0} (1+z^(k*i))). - Vladeta Jovovic, Jun 22 2003
G.f.: Sum_{k>=1} q(k)*x^k/(1 - x^k), where q() = A000009. - Ilya Gutkovskiy, Jun 20 2018
a(n) ~ exp(Pi*sqrt(n/3)) / (4*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Aug 27 2018
EXAMPLE
The a(6) = 8 uniform partitions are (6), (51), (42), (33), (321), (222), (2211), (111111). - Gus Wiseman, Apr 16 2018
MAPLE
with(numtheory):
b:= proc(n) option remember; `if`(n=0, 1, add(add(
`if`(d::odd, d, 0), d=divisors(j))*b(n-j), j=1..n)/n)
end:
a:= n-> add(b(d), d=divisors(n)):
seq(a(n), n=1..100); # Alois P. Heinz, Jul 11 2016
MATHEMATICA
b[n_] := b[n] = If[n==0, 1, Sum[DivisorSum[j, If[OddQ[#], #, 0]&]*b[n-j], {j, 1, n}]/n]; a[n_] := DivisorSum[n, b]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Dec 06 2016 after Alois P. Heinz *)
Table[DivisorSum[n, PartitionsQ], {n, 20}] (* Gus Wiseman, Apr 16 2018 *)
PROG
(PARI)
N = 66; q='q+O('q^N);
D(q)=eta(q^2)/eta(q); \\ A000009
Vec( sum(e=1, N, D(q^e)-1) ) \\ Joerg Arndt, Mar 27 2014
KEYWORD
nonn
STATUS
approved
Expansion of Product_{m>=1} 1/(1-x^m)^A000009(m).
+20
74
1, 1, 2, 4, 7, 12, 22, 36, 61, 101, 166, 267, 433, 686, 1088, 1709, 2671, 4140, 6403, 9824, 15028, 22864, 34657, 52288, 78646, 117784, 175865, 261657, 388145, 573936, 846377, 1244475, 1825170, 2669776, 3895833, 5671127, 8236945, 11936594, 17261557, 24909756
OFFSET
0,3
COMMENTS
Number of complete set partitions of the integer partitions of n. This is the Euler transform of A000009. If we change the combstruct command from unlabeled to labeled, then we get A000258. - Thomas Wieder, Aug 01 2008
Number of set multipartitions (multisets of sets) of integer partitions of n. Also a(n) < A270995(n) for n>5. - Gus Wiseman, Apr 10 2016
LINKS
EXAMPLE
From Gus Wiseman, Oct 22 2018: (Start)
The a(6) = 22 set multipartitions of integer partitions of 6:
(6) (15) (123) (12)(12) (1)(1)(1)(12) (1)(1)(1)(1)(1)(1)
(24) (1)(14) (1)(1)(13) (1)(1)(1)(1)(2)
(1)(5) (1)(23) (1)(2)(12)
(2)(4) (2)(13) (1)(1)(1)(3)
(3)(3) (3)(12) (1)(1)(2)(2)
(1)(1)(4)
(1)(2)(3)
(2)(2)(2)
(End)
MAPLE
with(combstruct): A089259:= [H, {H=Set(T, card>=1), T=PowerSet (Sequence (Z, card>=1), card>=1)}, unlabeled]; 1, seq (count (A089259, size=j), j=1..16); # Thomas Wieder, Aug 01 2008
# second Maple program:
with(numtheory):
b:= proc(n, i)
if n<0 or n>i*(i+1)/2 then 0
elif n=0 then 1
elif i<1 then 0
else b(n, i):= b(n-i, i-1) +b(n, i-1)
fi
end:
a:= proc(n) option remember; `if` (n=0, 1,
add(add(d* b(d, d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..100); # Alois P. Heinz, Nov 11, 2011
MATHEMATICA
max = 40; CoefficientList[Series[Product[1/(1-x^m)^PartitionsQ[m], {m, 1, max}], {x, 0, max}], x] (* Jean-François Alcover, Mar 24 2014 *)
b[n_, i_] := b[n, i] = Which[n<0 || n>i*(i+1)/2, 0, n == 0, 1, i<1, 0, True, b[n-i, i-1] + b[n, i-1]]; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d* b[d, d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 100} ] (* Jean-François Alcover, Feb 13 2016, after Alois P. Heinz *)
PROG
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
seq(n)={concat([1], EulerT(Vec(eta(x^2 + O(x*x^n))/eta(x + O(x*x^n)) - 1)))} \\ Andrew Howroyd, Oct 26 2018
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 23 2003
STATUS
approved
Expansion of Product_{k>=1} 1/(1 - A000009(k)*x^k).
+20
71
1, 1, 2, 4, 7, 12, 23, 37, 64, 108, 180, 290, 488, 772, 1251, 2001, 3180, 4982, 7913, 12261, 19162, 29669, 45804, 70187, 108029, 164276, 250267, 379439, 574067, 864044, 1302169, 1949050, 2917900, 4352796, 6481627, 9620256, 14274080, 21090608, 31142909
OFFSET
0,3
COMMENTS
The number of ways a number can be partitioned into not necessarily distinct parts and then each part is partitioned into distinct parts. Also a(n) > A089259(n) for n>5. - Gus Wiseman, Apr 10 2016
From Gus Wiseman, Jul 31 2022: (Start)
Also the number of ways to choose a multiset partition into distinct constant multisets of a multiset of length n that covers an initial interval of positive integers with weakly decreasing multiplicities. This interpretation involves only multisets, not sequences. For example, the a(1) = 1 through a(4) = 7 multiset partitions are:
{{1}} {{1,1}} {{1,1,1}} {{1,1,1,1}}
{{1},{2}} {{1},{1,1}} {{1},{1,1,1}}
{{2},{1,1}} {{1,1},{2,2}}
{{1},{2},{3}} {{2},{1,1,1}}
{{1},{2},{1,1}}
{{2},{3},{1,1}}
{{1},{2},{3},{4}}
The weakly normal non-strict version is A055887.
The non-strict version is A063834.
The weakly normal version is A304969.
(End)
FORMULA
From Vaclav Kotesovec, Mar 28 2016: (Start)
a(n) ~ c * n^2 * 2^(n/3), where
c = 436246966131366188.9451742926272200575837456478739... if mod(n,3) = 0
c = 436246966131366188.9351143199611598469443841182807... if mod(n,3) = 1
c = 436246966131366188.9322714926383227135786894927498... if mod(n,3) = 2
(End)
EXAMPLE
a(6)=23: {(6), (5)(1), (51), (4)(2), (42), (4)(1)(1), (41)(1), (3)(3), (3)(2)(1), (3)(21), (32)(1), (31)(2), (21)(3), (321), (3)(1)(1)(1), (31)(1)(1), (2)(2)(2), (2)(2)(1)(1), (21)(2)(1), (21)(21), (2)(1)(1)(1)(1), (21)(1)(1)(1), (1)(1)(1)(1)(1)(1)}.
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[1/(1-PartitionsQ[k]*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
Cf. A063834 (twice partitioned numbers), A271619, A279784, A327554, A327608.
The unordered version is A089259, non-strict A001970 (row-sums of A061260).
For compositions instead of partitions we have A304969, non-strict A055887.
A000041 counts integer partitions, strict A000009.
A072233 counts partitions by sum and length.
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 28 2016
STATUS
approved
Partial sums of A000009 (partitions into distinct parts).
+20
50
1, 2, 3, 5, 7, 10, 14, 19, 25, 33, 43, 55, 70, 88, 110, 137, 169, 207, 253, 307, 371, 447, 536, 640, 762, 904, 1069, 1261, 1483, 1739, 2035, 2375, 2765, 3213, 3725, 4310, 4978, 5738, 6602, 7584, 8697, 9957, 11383, 12993, 14809, 16857, 19161, 21751, 24661
OFFSET
0,2
COMMENTS
Also number of 1's in all partitions of n+1 into odd parts. Example: a(4)=7 because the partitions of 5 into odd parts are [5], [3,1,1], [1,1,1,1,1], having a total number of 7 1's. - Emeric Deutsch, Mar 29 2006
Convolved with A035363 = A000070. - Gary W. Adamson, Jun 09 2009
Equals row sums of triangle A166240. - Gary W. Adamson, Oct 09 2009
a(n) = if n <= 1 then A201377(1,n) else A201377(n,1). - Reinhard Zumkeller, Dec 02 2011
a(n) equals the sum of the parts of the form 2^k (k >= 0) in all partitions of n + 1 into distinct parts. Example: a(6) = 14. The partitions of 7 into distinct parts are [7], [6,1], [5,2], [4,3] and [4,2,1] having sum over parts of the form 2^k equal to 1 + 2 + 4 + 4 + 2 + 1 = 14. - Peter Bala, Dec 01 2013
Number of partitions of the (n+1)-multiset {0,...,0,1} with n 0's into distinct multisets; a(3) = 5: 0|00|1, 00|01, 000|1, 0|001, 0001. Also number of factorizations of 3*2^n into distinct factors; a(3) = 5: 2*3*4, 4*6, 3*8, 2*12, 24. - Alois P. Heinz, Jul 30 2021
LINKS
Kevin Beanland and Hung Viet Chu, On Schreier-type Sets, Partitions, and Compositions, arXiv:2311.01926 [math.CO], 2023.
A. V. Chekhonadskikh, Some classical number sequences in control system design, Siberian Electronic Mathematical Reports, Volume 14, p. 620-628. See Theorem 2.
FORMULA
G.f.: 1/[(1-x)*product(1-x^(2j-1), j=1..infinity)]. - Emeric Deutsch, Mar 29 2006
a(n) ~ 3^(1/4) * exp(Pi*sqrt(n/3)) / (2*Pi*n^(1/4)) * (1 + (18+13*Pi^2) / (48*Pi*sqrt(3*n)) + (2916 - 1404*Pi^2 + 121*Pi^4)/(13824*Pi^2*n)). - Vaclav Kotesovec, Feb 26 2015, updated Oct 26 2016
For n > 0, a(n) = A026906(n) + 1. - Vaclav Kotesovec, Oct 26 2016
Faster converging g.f.: A(x) = (1/(1 - x))*Sum_{n >= 0} x^(n*(2*n-1))/Product_{k = 1..2*n} (1 - x^k). - Peter Bala, Feb 02 2021
MAPLE
g:=1/(1-x)/product(1-x^(2*j-1), j=1..30): gser:=series(g, x=0, 50): seq(coeff(gser, x, n), n=0..46); # Emeric Deutsch, Mar 29 2006
# second Maple program:
b:= proc(n, i) b(n, i):= `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+`if`(i>n, 0, b(n-i, min(n-i, i-1)))))
end:
a:= proc(n) option remember; b(n, n) +`if`(n>0, a(n-1), 0) end:
seq(a(n), n=0..60); # Alois P. Heinz, Nov 21 2012
MATHEMATICA
CoefficientList[ Series[Product[(1 + t^i), {i, 1, Infinity}]/(1 - t), {t, 0, 46}], t] (* Geoffrey Critzer, May 16 2010 *)
b[n_, i_] := If[n == 0, 1, If[i<1, 0, b[n, i-1]+If[i>n, 0, b[n-i, Min[n-i, i-1]]]]]; a[n_] := a[n] = b[n, n]+If[n>0, a[n-1], 0]; Table[a[n], {n, 0, 60}] // Flatten (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)
Accumulate[Table[PartitionsQ[n], {n, 0, 50}]] (* Vaclav Kotesovec, Oct 26 2016 *)
CROSSREFS
Cf. A035363, A000070. - Gary W. Adamson, Jun 09 2009
Cf. A166240. - Gary W. Adamson, Oct 09 2009
Column k=1 of A346520.
KEYWORD
nonn
STATUS
approved
Expansion of 1/(1 - Sum_{k>=1} q(k)*x^k), where q(k) = number of partitions of k into distinct parts (A000009).
+20
46
1, 1, 2, 5, 11, 25, 57, 129, 292, 662, 1500, 3398, 7699, 17443, 39519, 89536, 202855, 459593, 1041267, 2359122, 5344889, 12109524, 27435660, 62158961, 140828999, 319065932, 722884274, 1637785870, 3710611298, 8406859805, 19046805534, 43152950024, 97768473163
OFFSET
0,3
COMMENTS
Invert transform of A000009.
From Gus Wiseman, Jul 31 2022: (Start)
Also the number of ways to choose a multiset partition into distinct constant multisets of a multiset of length n that covers an initial interval of positive integers. This interpretation involves only multisets, not sequences. For example, the a(1) = 1 through a(4) = 11 multiset partitions are:
{{1}} {{1,1}} {{1,1,1}} {{1,1,1,1}}
{{1},{2}} {{1},{1,1}} {{1},{1,1,1}}
{{1},{2,2}} {{1,1},{2,2}}
{{2},{1,1}} {{1},{2,2,2}}
{{1},{2},{3}} {{2},{1,1,1}}
{{1},{2},{1,1}}
{{1},{2},{2,2}}
{{1},{2},{3,3}}
{{1},{3},{2,2}}
{{2},{3},{1,1}}
{{1},{2},{3},{4}}
The non-strict version is A055887.
The strongly normal non-strict version is A063834.
The strongly normal version is A270995.
(End)
FORMULA
G.f.: 1/(1 - Sum_{k>=1} A000009(k)*x^k).
G.f.: 1/(2 - Product_{k>=1} (1 + x^k)).
G.f.: 1/(2 - Product_{k>=1} 1/(1 - x^(2*k-1))).
G.f.: 1/(2 - exp(Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k)))).
a(n) ~ c / r^n, where r = 0.441378990861652015438479635503868737167721352874... is the root of the equation QPochhammer[-1, r] = 4 and c = 0.4208931614610039677452560636348863586180784719323982664940444607322... - Vaclav Kotesovec, May 23 2018
EXAMPLE
From Gus Wiseman, Jul 31 2022: (Start)
a(n) is the number of ways to choose a strict integer partition of each part of an integer composition of n. The a(1) = 1 through a(4) = 11 choices are:
((1)) ((2)) ((3)) ((4))
((1)(1)) ((21)) ((31))
((1)(2)) ((1)(3))
((2)(1)) ((2)(2))
((1)(1)(1)) ((3)(1))
((1)(21))
((21)(1))
((1)(1)(2))
((1)(2)(1))
((2)(1)(1))
((1)(1)(1)(1))
(End)
MAPLE
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
`if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
a:= proc(n) option remember; `if`(n=0, 1,
add(b(j)*a(n-j), j=1..n))
end:
seq(a(n), n=0..40); # Alois P. Heinz, May 22 2018
MATHEMATICA
nmax = 32; CoefficientList[Series[1/(1 - Sum[PartitionsQ[k] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
nmax = 32; CoefficientList[Series[1/(2 - Product[1 + x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
nmax = 32; CoefficientList[Series[1/(2 - 1/QPochhammer[x, x^2]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[PartitionsQ[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 32}]
CROSSREFS
Row sums of A308680.
The unordered version is A089259, non-strict A001970 (row-sums of A061260).
For partitions instead of compositions we have A270995, non-strict A063834.
A000041 counts integer partitions, strict A000009.
A072233 counts partitions by sum and length.
Cf. A279784.
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 22 2018
STATUS
approved
Expansion of Product_{m>=1} (1+x^m)^A000009(m).
+20
35
1, 1, 1, 3, 4, 7, 12, 19, 30, 49, 77, 119, 186, 286, 438, 670, 1014, 1528, 2300, 3437, 5119, 7603, 11241, 16564, 24343, 35650, 52058, 75820, 110115, 159510, 230522, 332324, 477994, 686044, 982519, 1404243, 2003063, 2851720, 4052429, 5748440, 8140007, 11507125
OFFSET
0,4
COMMENTS
Number of partitions of n into distinct parts with one level of parentheses. Each "part" in parentheses is distinct from all others at the same level. Thus (2+1)+(1) is allowed but (2)+(1+1) and (2+1+1) are not.
LINKS
N. J. A. Sloane, Transforms
FORMULA
Weigh transform of A000009.
EXAMPLE
4=(4)=(3)+(1)=(3+1)=(2+1)+(1).
From Gus Wiseman, Oct 11 2018: (Start)
a(n) is the number of set systems (sets of sets) whose multiset union is an integer partition of n. For example, the a(1) = 1 through a(6) = 12 set systems are:
{{1}} {{2}} {{3}} {{4}} {{5}} {{6}}
{{1,2}} {{1,3}} {{1,4}} {{1,5}}
{{1},{2}} {{1},{3}} {{2,3}} {{2,4}}
{{1},{1,2}} {{1},{4}} {{1,2,3}}
{{2},{3}} {{1},{5}}
{{1},{1,3}} {{2},{4}}
{{2},{1,2}} {{1},{1,4}}
{{1},{2,3}}
{{2},{1,3}}
{{3},{1,2}}
{{1},{2},{3}}
{{1},{2},{1,2}}
(End)
MAPLE
g:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i<1, 0, g(n, i-1)+`if`(i>n, 0, g(n-i, i-1))))
end:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(g(i, i), j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> b(n, n):
seq(a(n), n=0..50); # Alois P. Heinz, May 19 2013
MATHEMATICA
g[n_, i_] := g[n, i] = If[n==0, 1, If[i<1, 0, g[n, i-1] + If[i>n, 0, g[n-i, i-1]]]]; b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[g[i, i], j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Dec 19 2015, after Alois P. Heinz *)
nn=10; Table[SeriesCoefficient[Product[(1+x^k)^PartitionsQ[k], {k, nn}], {x, 0, n}], {n, 0, nn}] (* Gus Wiseman, Oct 11 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Christian G. Bower, Oct 15 1999
STATUS
approved
Triangle T(n,k) in which n-th row lists in increasing order all partitions lambda of n into distinct parts encoded as Product_{i:lambda} prime(i); n>=0, 1<=k<=A000009(n).
+20
31
1, 2, 3, 5, 6, 7, 10, 11, 14, 15, 13, 21, 22, 30, 17, 26, 33, 35, 42, 19, 34, 39, 55, 66, 70, 23, 38, 51, 65, 77, 78, 105, 110, 29, 46, 57, 85, 91, 102, 130, 154, 165, 210, 31, 58, 69, 95, 114, 119, 143, 170, 182, 195, 231, 330, 37, 62, 87, 115, 133, 138, 187
OFFSET
0,2
COMMENTS
The concatenation of all rows (with offset 1) gives a permutation of the squarefree numbers A005117. The missing positive numbers are in A013929.
LINKS
EXAMPLE
The partitions of n=5 into distinct parts are {[5], [4,1], [3,2]}, encodings give {prime(5), prime(4)*prime(1), prime(3)*prime(2)} = {11, 7*2, 5*3} => row 5 = [11, 14, 15].
For n=0 the empty partition [] gives the empty product 1.
Triangle T(n,k) begins:
1;
2;
3;
5, 6;
7, 10;
11, 14, 15;
13, 21, 22, 30;
17, 26, 33, 35, 42;
19, 34, 39, 55, 66, 70;
23, 38, 51, 65, 77, 78, 105, 110;
29, 46, 57, 85, 91, 102, 130, 154, 165, 210;
...
Corresponding triangle of strict integer partitions begins:
0
(1)
(2)
(3) (21)
(4) (31)
(5) (41) (32)
(6) (42) (51) (321)
(7) (61) (52) (43) (421)
(8) (71) (62) (53) (521) (431)
(9) (81) (72) (63) (54) (621) (432) (531). - Gus Wiseman, Feb 23 2018
MAPLE
b:= proc(n, i) option remember; `if`(n=0, [1], `if`(i<1, [], [seq(
map(p->p*ithprime(i)^j, b(n-i*j, i-1))[], j=0..min(1, n/i))]))
end:
T:= n-> sort(b(n$2))[]:
seq(T(n), n=0..14);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n==0, {1}, If[i<1, {}, Flatten[Table[Map[ #*Prime[i]^j&, b[n-i*j, i-1]], {j, 0, Min[1, n/i]}]]]]; T[n_] := Sort[b[n, n]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Dec 18 2016, after Alois P. Heinz *)
CROSSREFS
Column k=1 gives: A008578(n+1).
Last elements of rows give: A246868.
Row sums give A147655.
Row lengths are: A000009.
Cf. A005117, A118462, A215366 (the same for all partitions), A258323, A299755, A299757, A299759.
KEYWORD
nonn,tabf,look
AUTHOR
Alois P. Heinz, Sep 05 2014
STATUS
approved
a(n) = Sum_{k=0..n} (-1)^k * binomial(n, k) * q(k), where q(k) is A000009 (partitions into distinct parts).
+20
24
1, 0, 0, -1, -3, -7, -14, -25, -41, -64, -100, -165, -294, -550, -1023, -1795, -2823, -3658, -2882, 2873, 20435, 62185, 148863, 314008, 613957, 1155794, 2175823, 4244026, 8753538, 19006490, 42471787, 95234575, 210395407, 453413866, 949508390, 1931939460
OFFSET
0,5
COMMENTS
Multiply by (-1)^n to get A380412, which is the first term of the n-th differences of the strict partition numbers, or column n=0 of A378622. - Gus Wiseman, Feb 04 2025
LINKS
MATHEMATICA
Table[Sum[(-1)^k * Binomial[n, k] * PartitionsQ[k], {k, 0, n}], {n, 0, 50}]
CROSSREFS
The non-strict version is the absolute value of A281425; see A175804, A320590.
Up to sign, same as A380412. See A320591, A377285, A378970, A378971.
A000009 counts strict integer partitions, differences A087897.
KEYWORD
sign
AUTHOR
Vaclav Kotesovec, Oct 09 2017
STATUS
approved
Number of partitions-into-distinct-parts of n (A000009) is a prime.
+20
23
3, 4, 5, 7, 22, 70, 100, 495, 1247, 2072, 320397, 3335367, 16168775, 37472505, 52940251, 78840125, 81191852
OFFSET
1,1
COMMENTS
No other terms below 10^8. - Max Alekseyev, Jul 10 2015
LINKS
Eric Weisstein's World of Mathematics, Integer Sequence Primes
Eric Weisstein's World of Mathematics, Partition Function Q
Eric Weisstein's World of Mathematics, Partition Function Q-Congruences
EXAMPLE
From Gus Wiseman, Jan 13 2020: (Start)
Strict partitions of a(1) = 3 through a(4) = 7:
(3) (4) (5) (7)
(2,1) (3,1) (3,2) (4,3)
(4,1) (5,2)
(6,1)
(4,2,1)
(End)
MATHEMATICA
n = 1; A035359 = {}; While[n < 10^7, n++; If[ PrimeQ[ PartitionsQ[n]], Print[n]; AppendTo[A035359, n]]]; A035359 (* Jean-François Alcover, Oct 12 2011 *)
CROSSREFS
The non-strict version is A046063.
The version for powers of 2 instead of primes is A331022.
The version for factorizations instead of strict partitions is A330991.
The version for strict factorizations instead of strict partitions is A331201.
KEYWORD
nonn,nice,hard,more
EXTENSIONS
More terms from Eric W. Weisstein
a(12) from Max Alekseyev, Jul 04 2009
a(13)-a(14) from Giovanni Resta, Jun 05 2015, Jun 11 2015
a(15)-a(17) from Max Alekseyev, Jul 10 2015
STATUS
approved
Binomial transform of the number of partitions into distinct parts (A000009).
+20
23
1, 2, 4, 9, 21, 49, 114, 265, 615, 1422, 3272, 7493, 17090, 38850, 88065, 199097, 448953, 1009788, 2265642, 5071611, 11328395, 25254093, 56195143, 124829822, 276839061, 612991848, 1355268779, 2992016128, 6596222234, 14522634554, 31933047707, 70130243427
OFFSET
0,2
COMMENTS
Let 0 < p < 1, r > 0, v > 0, f(n) = v*exp(r*n^p)/n^b, then
Sum_{k=0..n} binomial(n,k) * f(k) ~ f(n/2) * 2^n * exp(g(n)), where
g(n) = p^2 * r^2 * n^p / (2^(1+2*p)*n^(1-p) + p*r*(1-p)*2^(1+p)).
Special cases:
p < 1/2, g(n) = 0
p = 1/2, g(n) = r^2/16
p = 2/3, g(n) = r^2 * n^(1/3) / (9 * 2^(1/3)) - r^3/81
p = 3/4, g(n) = 9*r^2*sqrt(n)/(64*sqrt(2)) - 27*r^3*n^(1/4)/(2048*2^(1/4)) + 81*r^4/65536
p = 3/5, g(n) = 9*r^2*n^(1/5)/(100*2^(1/5))
p = 4/5, g(n) = 2^(7/5)*r^2*n^(3/5)/25 - 4*2^(3/5)*r^3*n^(2/5)/625 + 8*2^(4/5)*r^4*n^(1/5)/15625 - 32*r^5/390625
LINKS
FORMULA
a(n) ~ 2^(n-5/4) * exp(Pi*sqrt(n/6) + Pi^2/48) / (3^(1/4)*n^(3/4)).
G.f.: (1/(1 - x))*Product_{k>=1} (1 + x^k/(1 - x)^k). - Ilya Gutkovskiy, Aug 19 2018
MATHEMATICA
Table[Sum[Binomial[n, k]*PartitionsQ[k], {k, 0, n}], {n, 0, 50}]
nmax = 30; CoefficientList[Series[Sum[PartitionsQ[k] * x^k / (1-x)^(k+1), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 31 2022 *)
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Dec 25 2015
STATUS
approved

Search completed in 0.959 seconds