login
Search: a059956 -id:a059956
     Sort: relevance | references | number | modified | created      Format: long | short | data
Denominators of an Egyptian fraction for 1/zeta(2) = 0.607927101854... (A059956).
+20
24
2, 10, 127, 18838, 522338493, 727608914652776081, 990935377560451600699026552443764271, 1223212384013602554473872691328685513734082755736750146553750539914774364
OFFSET
1,1
LINKS
Mohammad K. Azarian, Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Problem 958, College Mathematics Journal, Vol. 42, No. 4, September 2011, p. 330. Solution published in Vol. 43, No. 4, September 2012, pp. 340-342.
Eric Weisstein's World of Mathematics, Egyptian Fraction.
EXAMPLE
1/zeta(2) = 0.607927101854... = 1/2 + 1/10 + 1/127 + 1/18838 + ...
MATHEMATICA
a = {}; k = N[1/Zeta[2], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a
PROG
(PARI) x=1/zeta(2); while(x, t=1\x+1; print1(t", "); x -= 1/t) \\ Charles R Greathouse IV, Nov 08 2013
KEYWORD
frac,nonn
AUTHOR
Artur Jasinski, Sep 22 2008
STATUS
approved
Squarefree numbers: numbers that are not divisible by a square greater than 1.
(Formerly M0617)
+10
1879
1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113
OFFSET
1,2
COMMENTS
1 together with the numbers that are products of distinct primes.
Also smallest sequence with the property that a(m)*a(k) is never a square for k != m. - Ulrich Schimke (ulrschimke(AT)aol.com), Dec 12 2001
Numbers k such that there is only one Abelian group with k elements, the cyclic group of order k (the numbers such that A000688(k) = 1). - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 25 2001
Numbers k such that A007913(k) > phi(k). - Benoit Cloitre, Apr 10 2002
a(n) is the smallest m with exactly n squarefree numbers <= m. - Amarnath Murthy, May 21 2002
k is squarefree <=> k divides prime(k)# where prime(k)# = product of first k prime numbers. - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 30 2004
Numbers k such that omega(k) = Omega(k) = A072047(k). - Lekraj Beedassy, Jul 11 2006
The LCM of any finite subset is in this sequence. - Lekraj Beedassy, Jul 11 2006
This sequence and the Beatty Pi^2/6 sequence (A059535) are "incestuous": the first 20000 terms are bounded within (-9, 14). - Ed Pegg Jr, Jul 22 2008
Let us introduce a function D(n) = sigma_0(n)/2^(alpha(1) + ... + alpha(r)), sigma_0(n) number of divisors of n (A000005), prime factorization of n = p(1)^alpha(1) * ... * p(r)^alpha(r), alpha(1) + ... + alpha(r) is sequence (A086436). Function D(n) splits the set of positive integers into subsets, according to the value of D(n). Squarefree numbers (A005117) has D(n)=1, other numbers are "deviated" from the squarefree ideal and have 0 < D(n) < 1. For D(n)=1/2 we have A048109, for D(n)=3/4 we have A067295. - Ctibor O. Zizka, Sep 21 2008
Numbers k such that gcd(k,k')=1 where k' is the arithmetic derivative (A003415) of k. - Giorgio Balzarotti, Apr 23 2011
Numbers k such that A007913(k) = core(k) = k. - Franz Vrabec, Aug 27 2011
Numbers k such that sqrt(k) cannot be simplified. - Sean Loughran, Sep 04 2011
Indices m where A057918(m)=0, i.e., positive integers m for which there are no integers k in {1,2,...,m-1} such that k*m is a square. - John W. Layman, Sep 08 2011
It appears that these are numbers j such that Product_{k=1..j} (prime(k) mod j) = 0 (see Maple code). - Gary Detlefs, Dec 07 2011. - This is the same claim as Mohammed Bouayoun's Mar 30 2004 comment above. To see why it holds: Primorial numbers, A002110, a subsequence of this sequence, are never divisible by any nonsquarefree number, A013929, and on the other hand, the index of the greatest prime dividing any n is less than n. Cf. A243291. - Antti Karttunen, Jun 03 2014
Conjecture: For each n=2,3,... there are infinitely many integers b > a(n) such that Sum_{k=1..n} a(k)*b^(k-1) is prime, and the smallest such an integer b does not exceed (n+3)*(n+4). - Zhi-Wei Sun, Mar 26 2013
The probability that a random natural number belongs to the sequence is 6/Pi^2, A059956 (see Cesàro reference). - Giorgio Balzarotti, Nov 21 2013
Booker, Hiary, & Keating give a subexponential algorithm for testing membership in this sequence without factoring. - Charles R Greathouse IV, Jan 29 2014
Because in the factorizations into prime numbers these a(n) (n >= 2) have exponents which are either 0 or 1 one could call the a(n) 'numbers with a fermionic prime number decomposition'. The levels are the prime numbers prime(j), j >= 1, and the occupation numbers (exponents) e(j) are 0 or 1 (like in Pauli's exclusion principle). A 'fermionic state' is then denoted by a sequence with entries 0 or 1, where, except for the zero sequence, trailing zeros are omitted. The zero sequence stands for a(1) = 1. For example a(5) = 6 = 2^1*3^1 is denoted by the 'fermionic state' [1, 1], a(7) = 10 by [1, 0, 1]. Compare with 'fermionic partitions' counted in A000009. - Wolfdieter Lang, May 14 2014
From Vladimir Shevelev, Nov 20 2014: (Start)
The following is an Eratosthenes-type sieve for squarefree numbers. For integers > 1:
1) Remove even numbers, except for 2; the minimal non-removed number is 3.
2) Replace multiples of 3 removed in step 1, and remove multiples of 3 except for 3 itself; the minimal non-removed number is 5.
3) Replace multiples of 5 removed as a result of steps 1 and 2, and remove multiples of 5 except for 5 itself; the minimal non-removed number is 6.
4) Replace multiples of 6 removed as a result of steps 1, 2 and 3 and remove multiples of 6 except for 6 itself; the minimal non-removed number is 7.
5) Repeat using the last minimal non-removed number to sieve from the recovered multiples of previous steps.
Proof. We use induction. Suppose that as a result of the algorithm, we have found all squarefree numbers less than n and no other numbers. If n is squarefree, then the number of its proper divisors d > 1 is even (it is 2^k - 2, where k is the number of its prime divisors), and, by the algorithm, it remains in the sequence. Otherwise, n is removed, since the number of its squarefree divisors > 1 is odd (it is 2^k-1).
(End)
The lexicographically least sequence of integers > 1 such that each entry has an even number of proper divisors occurring in the sequence (that's the sieve restated). - Glen Whitney, Aug 30 2015
0 is nonsquarefree because it is divisible by any square. - Jon Perry, Nov 22 2014, edited by M. F. Hasler, Aug 13 2015
The Heinz numbers of partitions with distinct parts. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product_{j=1..r} prime(j) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] the Heinz number is 2*2*3*7*29 = 2436. The number 30 (= 2*3*5) is in the sequence because it is the Heinz number of the partition [1,2,3]. - Emeric Deutsch, May 21 2015
It is possible for 2 consecutive terms to be even; for example a(258)=422 and a(259)=426. - Thomas Ordowski, Jul 21 2015. [These form a subsequence of A077395 since their product is divisible by 4. - M. F. Hasler, Aug 13 2015]
There are never more than 3 consecutive terms. Runs of 3 terms start at 1, 5, 13, 21, 29, 33, ... (A007675). - Ivan Neretin, Nov 07 2015
a(n) = product of row n in A265668. - Reinhard Zumkeller, Dec 13 2015
Numbers without excess, i.e., numbers k such that A001221(k) = A001222(k). - Juri-Stepan Gerasimov, Sep 05 2016
Numbers k such that b^(phi(k)+1) == b (mod k) for every integer b. - Thomas Ordowski, Oct 09 2016
Boreico shows that the set of square roots of the terms of this sequence is linearly independent over the rationals. - Jason Kimberley, Nov 25 2016 (reference found by Michael Coons).
Numbers k such that A008836(k) = A008683(k). - Enrique Pérez Herrero, Apr 04 2018
The prime zeta function P(s) "has singular points along the real axis for s=1/k where k runs through all positive integers without a square factor". See Wolfram link. - Maleval Francis, Jun 23 2018
Numbers k such that A007947(k) = k. - Kyle Wyonch, Jan 15 2021
The Schnirelmann density of the squarefree numbers is 53/88 (Rogers, 1964). - Amiram Eldar, Mar 12 2021
Comment from Isaac Saffold, Dec 21 2021: (Start)
Numbers k such that all groups of order k have a trivial Frattini subgroup [Dummit and Foote].
Let the group G have order n. If n is squarefree and n > 1, then G is solvable, and thus by Hall's Theorem contains a subgroup H_p of index p for all p | n. Each H_p is maximal in G by order considerations, and the intersection of all the H_p's is trivial. Thus G's Frattini subgroup Phi(G), being the intersection of G's maximal subgroups, must be trivial. If n is not squarefree, the cyclic group of order n has a nontrivial Frattini subgroup. (End)
Numbers for which the squarefree divisors (A206778) and the unitary divisors (A077610) are the same; moreover they are also the set of divisors (A027750). - Bernard Schott, Nov 04 2022
0 = A008683(a(n)) - A008836(a(n)) = A001615(a(n)) - A000203(a(n)). - Torlach Rush, Feb 08 2023
From Robert D. Rosales, May 20 2024: (Start)
Numbers n such that mu(n) != 0, where mu(n) is the Möbius function (A008683).
Solutions to the equation Sum_{d|n} mu(d)*sigma(d) = mu(n)*n, where sigma(n) is the sum of divisors function (A000203). (End)
a(n) is the smallest root of x = 1 + Sum_{k=1..n-1} floor(sqrt(x/a(k))) greater than a(n-1). - Yifan Xie, Jul 10 2024
REFERENCES
Jean-Marie De Koninck, Ces nombres qui nous fascinent, Entry 165, p. 53, Ellipses, Paris, 2008.
Dummit, David S., and Richard M. Foote. Abstract algebra. Vol. 1999. Englewood Cliffs, NJ: Prentice Hall, 1991.
Ivan M. Niven and Herbert S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 251.
Michael Pohst and Hans J. Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge Univ. Press, page 432.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Daniel Forgues, Table of n, a(n) for n = 1..60794 (first 10000 terms from T. D. Noe)
Zenon B. Batang, Squarefree integers and the abc conjecture, arXiv:2109.10226 [math.GM], 2021.
Andrew R. Booker, Ghaith A. Hiary and Jon P. Keating, Detecting squarefree numbers, Duke Mathematical Journal, Vol. 164, No. 2 (2015), pp. 235-275; arXiv preprint, arXiv:1304.6937 [math.NT], 2013-2015.
Iurie Boreico, Linear independence of radicals, The Harvard College Mathematics Review 2(1), 87-92, Spring 2008.
Ernesto Cesàro, La serie di Lambert in aritmetica assintotica, Rendiconto della Reale Accademia delle Scienze di Napoli, Serie 2, Vol. 7 (1893), pp. 197-204.
Henri Cohen, Francois Dress, and Mohamed El Marraki, Explicit estimates for summatory functions linked to the Möbius μ-function, Functiones et Approximatio Commentarii Mathematici 37 (2007), part 1, pp. 51-63.
H. Gent, Letter to N. J. A. Sloane, Nov 27 1975.
Andrew Granville, ABC means we can count squarefrees, International Mathematical Research Notices 19 (1998), 991-1009.
Pentti Haukkanen, Mika Mattila, Jorma K. Merikoski and Timo Tossavainen, Can the Arithmetic Derivative be Defined on a Non-Unique Factorization Domain?, Journal of Integer Sequences, Vol. 16 (2013), Article 13.1.2.
Aaron Krowne, squarefree number, PlanetMath.org.
Louis Marmet, First occurrences of square-free gaps and an algorithm for their computation, arXiv preprint arXiv:1210.3829 [math.NT], 2012.
Srinivasa Ramanujan, Irregular numbers, J. Indian Math. Soc., Vol. 5 (1913), pp. 105-106.
Kenneth Rogers, The Schnirelmann density of the squarefree integers, Proceedings of the American Mathematical Society, Vol. 15, No. 4 (1964), pp. 515-516.
J. A. Scott, Square-freedom revisited, The Mathematical Gazette, Vol. 90, No. 517 (2006), pp. 112-113.
Vladimir Shevelev, Set of all densities of exponentially S-numbers, arXiv preprint arXiv:1511.03860 [math.NT], 2015.
O. Trifonov, On the Squarefree Problem II, Math. Balkanica, Vol. 3 (1989), Fasc. 3-4.
Eric Weisstein's World of Mathematics, Squarefree.
Eric Weisstein's World of Mathematics, Prime Zeta Function.
Wikipedia, Squarefree integer.
FORMULA
Limit_{n->oo} a(n)/n = Pi^2/6 (see A013661). - Benoit Cloitre, May 23 2002
Equals A039956 UNION A056911. - R. J. Mathar, May 16 2008
A122840(a(n)) <= 1; A010888(a(n)) < 9. - Reinhard Zumkeller, Mar 30 2010
a(n) = A055229(A062838(n)) and a(n) > A055229(m) for m < A062838(n). - Reinhard Zumkeller, Apr 09 2010
A008477(a(n)) = 1. - Reinhard Zumkeller, Feb 17 2012
A055653(a(n)) = a(n); A055654(a(n)) = 0. - Reinhard Zumkeller, Mar 11 2012
A008966(a(n)) = 1. - Reinhard Zumkeller, May 26 2012
Sum_{n>=1} 1/a(n)^s = zeta(s)/zeta(2*s). - Enrique Pérez Herrero, Jul 07 2012
A056170(a(n)) = 0. - Reinhard Zumkeller, Dec 29 2012
A013928(a(n)+1) = n. - Antti Karttunen, Jun 03 2014
A046660(a(n)) = 0. - Reinhard Zumkeller, Nov 29 2015
Equals {1} UNION A000040 UNION A006881 UNION A007304 UNION A046386 UNION A046387 UNION A067885 UNION A123321 UNION A123322 UNION A115343 ... - R. J. Mathar, Nov 05 2016
|a(n) - n*Pi^2/6| < 0.058377*sqrt(n) for n >= 268293; this result can be derived from Cohen, Dress, & El Marraki, see links. - Charles R Greathouse IV, Jan 18 2018
From Amiram Eldar, Jul 07 2021: (Start)
Sum_{n>=1} (-1)^(a(n)+1)/a(n)^2 = 9/Pi^2.
Sum_{k=1..n} 1/a(k) ~ (6/Pi^2) * log(n).
Sum_{k=1..n} (-1)^(a(k)+1)/a(k) ~ (2/Pi^2) * log(n).
(all from Scott, 2006) (End)
MAPLE
with(numtheory); a := [ ]; for n from 1 to 200 do if issqrfree(n) then a := [ op(a), n ]; fi; od:
t:= n-> product(ithprime(k), k=1..n): for n from 1 to 113 do if(t(n) mod n = 0) then print(n) fi od; # Gary Detlefs, Dec 07 2011
A005117 := proc(n) option remember; if n = 1 then 1; else for a from procname(n-1)+1 do if numtheory[issqrfree](a) then return a; end if; end do: end if; end proc: # R. J. Mathar, Jan 09 2013
MATHEMATICA
Select[ Range[ 113], SquareFreeQ] (* Robert G. Wilson v, Jan 31 2005 *)
Select[Range[150], Max[Last /@ FactorInteger[ # ]] < 2 &] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Dec 26 2006 *)
NextSquareFree[n_, k_: 1] := Block[{c = 0, sgn = Sign[k]}, sf = n + sgn; While[c < Abs[k], While[ ! SquareFreeQ@ sf, If[sgn < 0, sf--, sf++]]; If[ sgn < 0, sf--, sf++]; c++]; sf + If[ sgn < 0, 1, -1]]; NestList[ NextSquareFree, 1, 70] (* Robert G. Wilson v, Apr 18 2014 *)
Select[Range[250], MoebiusMu[#] != 0 &] (* Robert D. Rosales, May 20 2024 *)
PROG
(Magma) [ n : n in [1..1000] | IsSquarefree(n) ];
(PARI) bnd = 1000; L = vector(bnd); j = 1; for (i=1, bnd, if(issquarefree(i), L[j]=i; j=j+1)); L
(PARI) {a(n)= local(m, c); if(n<=1, n==1, c=1; m=1; while( c<n, m++; if(issquarefree(m), c++)); m)} /* Michael Somos, Apr 29 2005 */
(PARI) list(n)=my(v=vectorsmall(n, i, 1), u, j); forprime(p=2, sqrtint(n), forstep(i=p^2, n, p^2, v[i]=0)); u=vector(sum(i=1, n, v[i])); for(i=1, n, if(v[i], u[j++]=i)); u \\ Charles R Greathouse IV, Jun 08 2012
(PARI) for(n=1, 113, if(core(n)==n, print1(n, ", "))); \\ Arkadiusz Wesolowski, Aug 02 2016
(PARI)
S(n) = my(s); forsquarefree(k=1, sqrtint(n), s+=n\k[1]^2*moebius(k)); s;
a(n) = my(min=1, max=231, k=0, sc=0); if(n >= 144, min=floor(zeta(2)*n - 5*sqrt(n)); max=ceil(zeta(2)*n + 5*sqrt(n))); while(min <= max, k=(min+max)\2; sc=S(k); if(abs(sc-n) <= sqrtint(n), break); if(sc > n, max=k-1, if(sc < n, min=k+1, break))); while(!issquarefree(k), k-=1); while(sc != n, my(j=1); if(sc > n, j = -1); k += j; sc += j; while(!issquarefree(k), k += j)); k; \\ Daniel Suteu, Jul 07 2022
(PARI) first(n)=my(v=vector(n), i); forsquarefree(k=1, if(n<268293, (33*n+30)\20, (n*Pi^2/6+0.058377*sqrt(n))\1), if(i++>n, return(v)); v[i]=k[1]); v \\ Charles R Greathouse IV, Jan 10 2023
(Haskell)
a005117 n = a005117_list !! (n-1)
a005117_list = filter ((== 1) . a008966) [1..]
-- Reinhard Zumkeller, Aug 15 2011, May 10 2011
(Python)
from sympy.ntheory.factor_ import core
def ok(n): return core(n, 2) == n
print(list(filter(ok, range(1, 114)))) # Michael S. Branicky, Jul 31 2021
(Python)
from itertools import count, islice
from sympy import factorint
def A005117_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda n:all(x == 1 for x in factorint(n).values()), count(max(startvalue, 1)))
A005117_list = list(islice(A005117_gen(), 20)) # Chai Wah Wu, May 09 2022
(Python)
from math import isqrt
from sympy import mobius
def A005117(n):
def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return m # Chai Wah Wu, Jul 22 2024
CROSSREFS
Complement of A013929. Subsequence of A072774 and A209061.
Characteristic function: A008966 (mu(n)^2, where mu = A008683).
Subsequences: A000040, A002110, A235488.
Subsequences: numbers j such that j*a(k) is squarefree where k > 1: A056911 (k = 2), A261034 (k = 3), A274546 (k = 5), A276378 (k = 6).
KEYWORD
nonn,easy,nice,core,changed
STATUS
approved
Möbius (or Moebius) function mu(n). mu(1) = 1; mu(n) = (-1)^k if n is the product of k different primes; otherwise mu(n) = 0.
+10
1516
1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1, 0, -1, 0, 1, 1, -1, 0, 0, 1, 0, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, 1, 1, 0, -1, -1, -1, 0, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 1, 0, 1, 1, -1, 0, -1, 1, 0, 0, 1, -1, -1, 0, 1, -1, -1, 0, -1, 1, 0, 0, 1, -1
OFFSET
1,1
COMMENTS
Moebius inversion: f(n) = Sum_{d|n} g(d) for all n <=> g(n) = Sum_{d|n} mu(d)*f(n/d) for all n.
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3 * 3 and 375 = 3 * 5^3 both have prime signature (3, 1).
A008683 = A140579^(-1) * A140664. - Gary W. Adamson, May 20 2008
Coons & Borwein prove that Sum_{n>=1} mu(n) z^n is transcendental. - Jonathan Vos Post, Jun 11 2008; edited by Charles R Greathouse IV, Sep 06 2017
Equals row sums of triangle A144735 (the square of triangle A054533). - Gary W. Adamson, Sep 20 2008
Conjecture: a(n) is the determinant of Redheffer matrix A143104 where T(n, n) = 0. Verified for the first 50 terms. - Mats Granvik, Jul 25 2008
From Mats Granvik, Dec 06 2008: (Start)
The Editorial Office of the Journal of Number Theory kindly provided (via B. Conrey) the following proof of the conjecture: Let A be A143104 and B be A143104 where T(n, n) = 0.
"Suppose you expand det(B_n) along the bottom row. There is only a 1 in the first position and so the answer is (-1)^n times det(C_{n-1}) say, where C_{n-1} is the (n-1) by (n-1) matrix obtained from B_n by deleting the first column and the last row. Now the determinant of the Redheffer matrix is det(A_n) = M(n) where M(n) is the sum of mu(m) for 1 <= m <= n. Expanding det(A_n) along the bottom row, we see that det(A_n) = (-1)^n * det(C_{n-1}) + M(n-1). So we have det(B_n) = (-1)^n * det(C_{n-1}) = det(A_n) - M(n-1) = M(n) - M(n-1) = mu(n)." (End)
Conjecture: Consider the table A051731 and treat 1 as a divisor. Move the value in the lower right corner vertically to a divisor position in the transpose of the table and you will find that the determinant is the Moebius function. The number of permutation matrices that contribute to the Moebius function appears to be A074206. - Mats Granvik, Dec 08 2008
Convolved with A152902 = A000027, the natural numbers. - Gary W. Adamson, Dec 14 2008
[Pickover, p. 226]: "The probability that a number falls in the -1 mailbox turns out to be 3/Pi^2 - the same probability as for falling in the +1 mailbox". - Gary W. Adamson, Aug 13 2009
Let A = A176890 and B = A * A * ... * A, then the leftmost column in matrix B converges to the Moebius function. - Mats Granvik, Gary W. Adamson, Apr 28 2010 and May 28 2020
Equals row sums of triangle A176918. - Gary W. Adamson, Apr 29 2010
Calculate matrix powers: A175992^0 - A175992^1 + A175992^2 - A175992^3 + A175992^4 - ... Then the Mobius function is found in the first column. Compare this to the binomial series for (1+x)^-1 = 1 - x + x^2 - x^3 + x^4 - ... . - Mats Granvik, Gary W. Adamson, Dec 06 2010
From Richard L. Ollerton, May 08 2021: (Start)
Formulas for the numerous OEIS entries involving the Möbius transform (Dirichlet convolution of a(n) and some sequence h(n)) can be derived using the following (n >= 1):
Sum_{d|n} mu(d)*h(n/d) = Sum_{k=1..n} h(gcd(n,k))*mu(n/gcd(n,k))/phi(n/gcd(n,k)) = Sum_{k=1..n} h(n/gcd(n,k))*mu(gcd(n,k))/phi(n/gcd(n,k)), where phi = A000010.
Use of gcd(n,k)*lcm(n,k) = n*k provides further variations. (End)
Formulas for products corresponding to the sums above are also available for sequences f(n) > 0: Product_{d|n} f(n/d)^mu(d) = Product_{k=1..n} f(gcd(n,k))^(mu(n/gcd(n,k))/phi(n/gcd(n,k))) = Product_{k=1..n} f(n/gcd(n,k))^(mu(gcd(n,k))/phi(n/gcd(n,k))). - Richard L. Ollerton, Nov 08 2021
REFERENCES
T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 24.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 161, #16.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 262 and 287.
Clifford A. Pickover, "The Math Book, from Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics", Sterling Publishing, 2009, p. 226. - Gary W. Adamson, Aug 13 2009
G. Pólya and G. Szegő, Problems and Theorems in Analysis Volume II. Springer_Verlag 1976.
LINKS
Daniel Forgues, Table of n, a(n) for n = 1..100000 (first 10000 terms from N. J. A. Sloane)
Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 826.
All Angles, What is the Moebius function?, video, 2024.
Joerg Arndt, Matters Computational (The Fxtbook), pp. 705-707.
Olivier Bordellès, Some Explicit Estimates for the Mobius Function , J. Int. Seq. 18 (2015) 15.11.1
G. J. Chaitin, Thoughts on the Riemann hypothesis arXiv:math/0306042 [math.HO], 2003.
Michael Coons and Peter Borwein, Transcendence of Power Series for Some Number Theoretic Functions, arXiv:0806.1563 [math.NT], 2008.
Marc Deléglise and Joël Rivat, Computing the summation of the Mobius function, Experiment. Math. 5:4 (1996), pp. 291-295.
Tom Edgar, Posets and Möbius Inversion, slides, (2008).
A. F. Möbius, Über eine besondere Art von Umkehrung der Reihen. Journal für die reine und angewandte Mathematik 9 (1832), 105-123.
Anders Björner and Richard P. Stanley, A combinatorial miscellany.
Paul Tarau, Emulating Primality with Multiset Representations of Natural Numbers, in Theoretical Aspects Of Computing, ICTAC 2011, Lecture Notes in Computer Science, 2011, Volume 6916/2011, 218-238.
Paul Tarau, Towards a generic view of primality through multiset decompositions of natural numbers, Theoretical Computer Science, Volume 537, Jun 05 2014, pp. 105-124.
Gerard Villemin's Almanac of Numbers, Nombres de Moebius et de Mertens.
Eric Weisstein's World of Mathematics, Moebius Function.
Eric Weisstein's World of Mathematics, Redheffer Matrix.
Wikipedia, Moebius function.
FORMULA
Sum_{d|n} mu(d) = 1 if n = 1 else 0.
Dirichlet generating function: Sum_{n >= 1} mu(n)/n^s = 1/zeta(s). Also Sum_{n >= 1} mu(n)*x^n/(1-x^n) = x.
In particular, Sum_{n > 0} mu(n)/n = 0. - Franklin T. Adams-Watters, Jun 20 2014
phi(n) = Sum_{d|n} mu(d)*n/d.
a(n) = A091219(A091202(n)).
Multiplicative with a(p^e) = -1 if e = 1; 0 if e > 1. - David W. Wilson, Aug 01 2001
abs(a(n)) = Sum_{d|n} 2^A001221(d)*a(n/d). - Benoit Cloitre, Apr 05 2002
Sum_{d|n} (-1)^(n/d)*mobius(d) = 0 for n > 2. - Emeric Deutsch, Jan 28 2005
a(n) = (-1)^omega(n) * 0^(bigomega(n) - omega(n)) for n > 0, where bigomega(n) and omega(n) are the numbers of prime factors of n with and without repetition (A001222, A001221, A046660). - Reinhard Zumkeller, Apr 05 2003
Dirichlet generating function for the absolute value: zeta(s)/zeta(2s). - Franklin T. Adams-Watters, Sep 11 2005
mu(n) = A129360(n) * (1, -1, 0, 0, 0, ...). - Gary W. Adamson, Apr 17 2007
mu(n) = -Sum_{d < n, d|n} mu(d) if n > 1 and mu(1) = 1. - Alois P. Heinz, Aug 13 2008
a(n) = A174725(n) - A174726(n). - Mats Granvik, Mar 28 2010
a(n) = first column in the matrix inverse of a triangular table with the definition: T(1, 1) = 1, n > 1: T(n, 1) is any number or sequence, k = 2: T(n, 2) = T(n, k-1) - T(n-1, k), k > 2 and n >= k: T(n,k) = (Sum_{i = 1..k-1} T(n-i, k-1)) - (Sum_{i = 1..k-1} T(n-i, k)). - Mats Granvik, Jun 12 2010
Product_{n >= 1} (1-x^n)^(-a(n)/n) = exp(x) (product form of the exponential function). - Joerg Arndt, May 13 2011
a(n) = Sum_{k=1..n, gcd(k,n)=1} exp(2*Pi*i*k/n), the sum over the primitive n-th roots of unity. See the Apostol reference, p. 48, Exercise 14 (b). - Wolfdieter Lang, Jun 13 2011
mu(n) = Sum_{k=1..n} A191898(n,k)*exp(-i*2*Pi*k/n)/n. (conjecture). - Mats Granvik, Nov 20 2011
Sum_{k=1..n} a(k)*floor(n/k) = 1 for n >= 1. - Peter Luschny, Feb 10 2012
a(n) = floor(omega(n)/bigomega(n))*(-1)^omega(n) = floor(A001221(n)/A001222(n))*(-1)^A001221(n). - Enrique Pérez Herrero, Apr 27 2012
Multiplicative with a(p^e) = binomial(1, e) * (-1)^e. - Enrique Pérez Herrero, Jan 19 2013
G.f. A(x) satisfies: x^2/A(x) = Sum_{n>=1} A( x^(2*n)/A(x)^n ). - Paul D. Hanna, Apr 19 2016
a(n) = -A008966(n)*A008836(n)/(-1)^A005361(n) = -floor(rad(n)/n)Lambda(n)/(-1)^tau(n/rad(n)). - Anthony Browne, May 17 2016
a(n) = Kronecker delta of A001221(n) and A001222(n) (which is A008966) multiplied by A008836(n). - Eric Desbiaux, Mar 15 2017
a(n) = A132971(A156552(n)). - Antti Karttunen, May 30 2017
Conjecture: a(n) = Sum_{k>=0} (-1)^(k-1)*binomial(A001222(n)-1, k)*binomial(A001221(n)-1+k, k), for n > 1. Verified for the first 100000 terms. - Mats Granvik, Sep 08 2018
From Peter Bala, Mar 15 2019: (Start)
Sum_{n >= 1} mu(n)*x^n/(1 + x^n) = x - 2*x^2. See, for example, Pólya and Szegő, Part V111, Chap. 1, No. 71.
Sum_{n >= 1} (-1)^(n+1)*mu(n)*x^n/(1 - x^n) = x + 2*(x^2 + x^4 + x^8 + x^16 + ...).
Sum_{n >= 1} (-1)^(n+1)*mu(n)*x^n/(1 + x^n) = x - 2*(x^4 + x^8 + x^16 + x^32 + ...).
Sum_{n >= 1} |mu(n)|*x^n/(1 - x^n) = Sum_{n >= 1} (2^w(n))*x^n, where w(n) is the number of different prime factors of n (Hardy and Wright, Chapter XVI, Theorem 264).
Sum_{n odd} |mu(n)|*x^n/(1 + x^(2*n)) = Sum_{n in S_1} (2^w_1(n))*x^n, where S_1 = {1, 5, 13, 17, 25, 29, ...} is the multiplicative semigroup of positive integers generated by 1 and the primes p = 1 (mod 4), and w_1(n) is the number of different prime factors p = 1 (mod 4) of n.
Sum_{n odd} (-1)^((n-1)/2)*mu(n)*x^n/(1 - x^(2*n)) = Sum_{n in S_3} (2^w_3(n))*x^n, where S_3 = {1, 3, 7, 9, 11, 19, 21, ...} is the multiplicative semigroup of positive integers generated by 1 and the primes p = 3 (mod 4), and where w_3(n) is the number of different prime factors p = 3 (mod 4) of n. (End)
G.f. A(x) satisfies: A(x) = x - Sum_{k>=2} A(x^k). - Ilya Gutkovskiy, May 11 2019
a(n) = sign(A023900(n)) * [A007947(n) = n] where [] is the Iverson bracket. - I. V. Serov, May 15 2019
a(n) = Sum_{k = 1..n} gcd(k, n)*a(gcd(k, n)) = Sum_{d divides n} a(d)*d*phi(n/d). - Peter Bala, Jan 16 2024
EXAMPLE
G.f. = x - x^2 - x^3 - x^5 + x^6 - x^7 + x^10 - x^11 - x^13 + x^14 + x^15 + ...
MAPLE
with(numtheory): A008683 := n->mobius(n);
with(numtheory): [ seq(mobius(n), n=1..100) ];
# Note that older versions of Maple define mobius(0) to be -1.
# This is unwise! Moebius(0) is better left undefined.
with(numtheory):
mu:= proc(n::posint) option remember; `if`(n=1, 1,
-add(mu(d), d=divisors(n) minus {n}))
end:
seq(mu(n), n=1..100); # Alois P. Heinz, Aug 13 2008
MATHEMATICA
Array[ MoebiusMu, 100]
(* Second program: *)
m = 100; A[_] = 0;
Do[A[x_] = x - Sum[A[x^k], {k, 2, m}] + O[x]^m // Normal, {m}];
CoefficientList[A[x]/x, x] (* Jean-François Alcover, Oct 20 2019, after Ilya Gutkovskiy *)
PROG
(Axiom) [moebiusMu(n) for n in 1..100]
(Magma) [ MoebiusMu(n) : n in [1..100]];
(PARI) a=n->if(n<1, 0, moebius(n));
(PARI) {a(n) = if( n<1, 0, direuler( p=2, n, 1 - X)[n])};
(PARI) list(n)=my(v=vector(n, i, 1)); forprime(p=2, sqrtint(n), forstep(i=p, n, p, v[i]*=-1); forstep(i=p^2, n, p^2, v[i]=0)); forprime(p=sqrtint(n)+1, n, forstep(i=p, n, p, v[i]*=-1)); v \\ Charles R Greathouse IV, Apr 27 2012
(Maxima) A008683(n):=moebius(n)$ makelist(A008683(n), n, 1, 30); /* Martin Ettl, Oct 24 2012 */
(Haskell)
import Math.NumberTheory.Primes.Factorisation (factorise)
a008683 = mu . snd . unzip . factorise where
mu [] = 1; mu (1:es) = - mu es; mu (_:es) = 0
-- Reinhard Zumkeller, Dec 13 2015, Oct 09 2013
(Sage)
@cached_function
def mu(n):
if n < 2: return n
return -sum(mu(d) for d in divisors(n)[:-1])
# Changing the sign of the sum gives the number of ordered factorizations of n A074206.
print([mu(n) for n in (1..96)]) # Peter Luschny, Dec 26 2016
(Python)
from sympy import mobius
print([mobius(i) for i in range(1, 101)]) # Indranil Ghosh, Mar 18 2017
CROSSREFS
Variants of a(n) are A178536, A181434, A181435.
Cf. A059956 (Dgf at s=2), A088453 (Dgf at s=3), A215267 (Dgf at s=4), A343308 (Dgf at s=5).
KEYWORD
core,sign,easy,mult,nice
STATUS
approved
Decimal expansion of Pi (or digits of Pi).
(Formerly M2218 N0880)
+10
1096
3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 6, 4, 3, 3, 8, 3, 2, 7, 9, 5, 0, 2, 8, 8, 4, 1, 9, 7, 1, 6, 9, 3, 9, 9, 3, 7, 5, 1, 0, 5, 8, 2, 0, 9, 7, 4, 9, 4, 4, 5, 9, 2, 3, 0, 7, 8, 1, 6, 4, 0, 6, 2, 8, 6, 2, 0, 8, 9, 9, 8, 6, 2, 8, 0, 3, 4, 8, 2, 5, 3, 4, 2, 1, 1, 7, 0, 6, 7, 9, 8, 2, 1, 4
OFFSET
1,1
COMMENTS
Sometimes called Archimedes's constant.
Ratio of a circle's circumference to its diameter.
Also area of a circle with radius 1.
Also surface area of a sphere with diameter 1.
A useful mnemonic for remembering the first few terms: How I want a drink, alcoholic of course, after the heavy lectures involving quantum mechanics ...
Also ratio of surface area of sphere to one of the faces of the circumscribed cube. Also ratio of volume of a sphere to one of the six inscribed pyramids in the circumscribed cube. - Omar E. Pol, Aug 09 2012
Also surface area of a quarter of a sphere of radius 1. - Omar E. Pol, Oct 03 2013
Also the area under the peak-shaped even function f(x)=1/cosh(x). Proof: for the upper half of the integral, write f(x) = (2*exp(-x))/(1+exp(-2x)) = 2*Sum_{k>=0} (-1)^k*exp(-(2k+1)*x) and integrate term by term from zero to infinity. The result is twice the Gregory series for Pi/4. - Stanislav Sykora, Oct 31 2013
A curiosity: a 144 X 144 magic square of 7th powers was recently constructed by Toshihiro Shirakawa. The magic sum = 3141592653589793238462643383279502884197169399375105, which is the concatenation of the first 52 digits of Pi. See the MultiMagic Squares link for details. - Christian Boyer, Dec 13 2013 [Comment revised by N. J. A. Sloane, Aug 27 2014]
x*Pi is also the surface area of a sphere whose diameter equals the square root of x. - Omar E. Pol, Dec 25 2013
Also diameter of a sphere whose surface area equals the volume of the circumscribed cube. - Omar E. Pol, Jan 13 2014
From Daniel Forgues, Mar 20 2015: (Start)
An interesting anecdote about the base-10 representation of Pi, with 3 (integer part) as first (index 1) digit:
358 0
359 3
360 6
361 0
362 0
And the circle is customarily subdivided into 360 degrees (although Pi radians yields half the circle)...
(End)
Sometimes referred to as Archimedes's constant, because the Greek mathematician computed lower and upper bounds of Pi by drawing regular polygons inside and outside a circle. In Germany it was called the Ludolphian number until the early 20th century after the Dutch mathematician Ludolph van Ceulen (1540-1610), who calculated up to 35 digits of Pi in the late 16th century. - Martin Renner, Sep 07 2016
As of the beginning of 2019 more than 22 trillion decimal digits of Pi are known. See the Wikipedia article "Chronology of computation of Pi". - Harvey P. Dale, Jan 23 2019
On March 14, 2019, Emma Haruka Iwao announced the calculation of 31.4 trillion digits of Pi using Google Cloud's infrastructure. - David Radcliffe, Apr 10 2019
Also volume of three quarters of a sphere of radius 1. - Omar E. Pol, Aug 16 2019
On August 5, 2021, researchers from the University of Applied Sciences of the Grisons in Switzerland announced they had calculated 62.8 trillion digits. Guinness World Records has not verified this yet. - Alonso del Arte, Aug 23 2021
The Hermite-Lindemann (1882) theorem states, that if z is a nonzero algebraic number, then e^z is a transcendent number. The transcendence of Pi then results from Euler's relation: e^(i*Pi) = -1. - Peter Luschny, Jul 21 2023
REFERENCES
Mohammad K. Azarian, A Summary of Mathematical Works of Ghiyath ud-din Jamshid Kashani, Journal of Recreational Mathematics, Vol. 29(1), pp. 32-42, 1998.
J. Arndt & C. Haenel, Pi Unleashed, Springer NY 2001.
P. Beckmann, A History of Pi, Golem Press, Boulder, CO, 1977.
J.-P. Delahaye, Le fascinant nombre pi, Pour la Science, Paris 1997.
P. Eyard and J.-P. Lafon, The Number Pi, Amer. Math. Soc., 2004.
S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, Section 1.4.
Le Petit Archimede, Special Issue On Pi, Supplement to No. 64-5, May 1980 ADCS Amiens.
Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 31.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 1, equations 1:7:1, 1:7:2 at pages 12-13.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See pp. 48-55.
LINKS
Sanjar M. Abrarov, Rehan Siddiqui, Rajinder K. Jagpal, and Brendan M. Quine, Unconditional applicability of the Lehmer's measure to the two-term Machin-like formula for pi, arXiv:2004.11711 [math.GM], 2020.
Emilio Ambrisi and Bruno Rizzi, Appunti da un corso di aggiornamento, Mathesis (Sezione Casertana), Quaderno n. 1, Liceo G. Galilei, Mondragone (CE), Italy, June 22-28 1979. (In Italian). See p. 15.
Dave Andersen, Pi-Search Page
D. H. Bailey and J. M. Borwein, Experimental Mathematics: Examples, Methods and Implications, Notices of the AMS, Volume 52, Number 5, May 2005, pp. 502-514.
Harry Baker, "Pi calculated to a record-breaking 62.8 trillion digits", Live Science, August 17, 2021.
Steve Baker and Thomas Moore, 100 trillion digits of pi
Frits Beukers, A rational approach to Pi, Nieuw Archief voor de Wiskunde, December 2000, pp. 372-379.
J. M. Borwein, Talking about Pi
J. M. Borwein and M. Macklem, The (Digital) Life of Pi, The Australian Mathematical Society Gazette, Volume 33, Number 5, Sept. 2006, pp. 243-248.
Peter Borwein, The amazing number Pi, Nieuw Archief voor de Wiskunde, September 2000, pp. 254-258.
Christian Boyer, MultiMagic Squares
J. Britton, Mnemonics For The Number Pi [archived page]
D. Castellanos, The ubiquitous pi, Math. Mag., 61 (1988), 67-98 and 148-163.
Jonas Castillo Toloza, Fascinating Method for Finding Pi
L. Euler, On the sums of series of reciprocals, arXiv:math/0506415 [math.HO], 2005-2008.
X. Gourdon, Pi to 16000 decimals [archived page]
X. Gourdon and P. Sebah, Archimedes' constant Pi
B. Gourevitch, L'univers de Pi
Antonio Gracia Llorente, Novel Infinite Products πe and π/e, OSF Preprint, 2024.
J. Guillera and J. Sondow, Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent, Ramanujan J. 16 (2008) 247-270. Preprint: arXiv:math/0506319 [math.NT] (2005-2006).
H. Havermann, Simple Continued Fraction for Pi [archived page]
M. D. Huberty et al., 100000 Digits of Pi
ICON Project, Pi to 50000 places [archived page]
P. Johns, 120000 Digits of Pi [archived page]
Yasumasa Kanada and Daisuke Takahashi, 206 billion digits of Pi [archived page]
Literate Programs, Pi with Machin's formula (Haskell) [archived page]
Johannes W. Meijer, Pi everywhere poster, Mar 14 2013
NERSC, Search Pi [broken link]
Remco Niemeijer, The Digits of Pi, programmingpraxis.
Steve Pagliarulo, Stu's pi page [archived page]
Michael Penn, A nice inverse tangent integral., YouTube video, 2020.
Michael Penn, Pi is irrational (π∉ℚ), YouTube video, 2020.
I. Peterson, A Passion for Pi
Simon Plouffe, 10000 digits of Pi
Simon Plouffe, A formula for the nth decimal digit or binary of Pi and powers of Pi, arXiv:2201.12601 [math.NT], 2022.
M. Z. Rafat and D. Dobie, Throwing Pi at a wall, arXiv:1901.06260 [physics.class-ph], 2020.
S. Ramanujan, Modular equations and approximations to \pi, Quart. J. Math. 45 (1914), 350-372.
Grant Sanderson, Why do colliding blocks compute pi?, 3Blue1Brown video (2019).
Daniel B. Sedory, The Pi Pages
D. Shanks and J. W. Wrench, Jr., Calculation of pi to 100,000 decimals, Math. Comp. 16 1962 76-99.
Sizes, pi
N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 5.
A. Sofo, Pi and some other constants, Journal of Inequalities in Pure and Applied Mathematics, Vol. 6, Issue 5, Article 138, 2005.
Jonathan Sondow, A faster product for Pi and a new integral for ln Pi/2, arXiv:math/0401406 [math.NT], 2004; Amer. Math. Monthly 112 (2005) 729-734.
D. Surendran, Can I have a small container of coffee? [archived page]
Wislawa Szymborska, Pi (The admirable number Pi), Miracle Fair, 2002.
G. Vacca, A new analytical expression for the number pi, and some historical considerations, Bull. Amer. Math. Soc. 16 (1910), 368-369.
Stan Wagon, Is Pi Normal?
Eric Weisstein's World of Mathematics, Pi and Pi Digits
Alexander J. Yee & Shigeru Kondo, 5 Trillion Digits of Pi - New World Record
Alexander J. Yee & Shigeru Kondo, Round 2... 10 Trillion Digits of Pi
FORMULA
Pi = 4*Sum_{k>=0} (-1)^k/(2k+1) [Madhava-Gregory-Leibniz, 1450-1671]. - N. J. A. Sloane, Feb 27 2013
From Johannes W. Meijer, Mar 10 2013: (Start)
2/Pi = (sqrt(2)/2) * (sqrt(2 + sqrt(2))/2) * (sqrt(2 + sqrt(2 + sqrt(2)))/2) * ... [Viete, 1593]
2/Pi = Product_{k>=1} (4*k^2-1)/(4*k^2). [Wallis, 1655]
Pi = 3*sqrt(3)/4 + 24*(1/12 - Sum_{n>=2} (2*n-2)!/((n-1)!^2*(2*n-3)*(2*n+1)*2^(4*n-2))). [Newton, 1666]
Pi/4 = 4*arctan(1/5) - arctan(1/239). [Machin, 1706]
Pi^2/6 = 3*Sum_{n>=1} 1/(n^2*binomial(2*n,n)). [Euler, 1748]
1/Pi = (2*sqrt(2)/9801) * Sum_{n>=0} (4*n)!*(1103+26390*n)/((n!)^4*396^(4*n)). [Ramanujan, 1914]
1/Pi = 12*Sum_{n>=0} (-1)^n*(6*n)!*(13591409 + 545140134*n)/((3*n)!*(n!)^3*(640320^3)^(n+1/2)). [David and Gregory Chudnovsky, 1989]
Pi = Sum_{n>=0} (1/16^n) * (4/(8*n+1) - 2/(8*n+4) - 1/(8*n+5) - 1/(8*n+6)). [Bailey-Borwein-Plouffe, 1989] (End)
Pi = 4 * Sum_{k>=0} 1/(4*k+1) - 1/(4*k+3). - Alexander R. Povolotsky, Dec 25 2008
Pi = 4*sqrt(-1*(Sum_{n>=0} (i^(2*n+1))/(2*n+1))^2). - Alexander R. Povolotsky, Jan 25 2009
Pi = Integral_{x=-infinity..infinity} dx/(1+x^2). - Mats Granvik and Gary W. Adamson, Sep 23 2012
Pi - 2 = 1/1 + 1/3 - 1/6 - 1/10 + 1/15 + 1/21 - 1/28 - 1/36 + 1/45 + ... [Jonas Castillo Toloza, 2007], that is, Pi - 2 = Sum_{n>=1} (1/((-1)^floor((n-1)/2)*(n^2+n)/2)). - José de Jesús Camacho Medina, Jan 20 2014
Pi = 3 * Product_{t=img(r),r=(1/2+i*t) root of zeta function} (9+4*t^2)/(1+4*t^2) <=> RH is true. - Dimitris Valianatos, May 05 2016
From Ilya Gutkovskiy, Aug 07 2016: (Start)
Pi = Sum_{k>=1} (3^k - 1)*zeta(k+1)/4^k.
Pi = 2*Product_{k>=2} sec(Pi/2^k).
Pi = 2*Integral_{x>=0} sin(x)/x dx. (End)
Pi = 2^{k + 1}*arctan(sqrt(2 - a_{k - 1})/a_k) at k >= 2, where a_k = sqrt(2 + a_{k - 1}) and a_1 = sqrt(2). - Sanjar Abrarov, Feb 07 2017
Pi = Integral_{x = 0..2} sqrt(x/(2 - x)) dx. - Arkadiusz Wesolowski, Nov 20 2017
Pi = lim_{n->infinity} 2/n * Sum_{m=1,n} ( sqrt( (n+1)^2 - m^2 ) - sqrt( n^2 - m^2 ) ). - Dimitri Papadopoulos, May 31 2019
From Peter Bala, Oct 29 2019: (Start)
Pi = Sum_{n >= 0} 2^(n+1)/( binomial(2*n,n)*(2*n + 1) ) - Euler.
More generally, Pi = (4^x)*x!/(2*x)! * Sum_{n >= 0} 2^(n+1)*(n+x)!*(n+2*x)!/(2*n+2*x+1)! = 2*4^x*x!^2/(2*x+1)! * hypergeom([2*x+1,1], [x+3/2], 1/2), valid for complex x not in {-1,-3/2,-2,-5/2,...}. Here, x! is shorthand notation for the function Gamma(x+1). This identity may be proved using Gauss's second summation theorem.
Setting x = 3/4 and x = -1/4 (resp. x = 1/4 and x = -3/4) in the above identity leads to series representations for the constant A085565 (resp. A076390). (End)
Pi = Im(log(-i^i)) = log(i^i)*(-2). - Peter Luschny, Oct 29 2019
From Amiram Eldar, Aug 15 2020: (Start)
Equals 2 + Integral_{x=0..1} arccos(x)^2 dx.
Equals Integral_{x=0..oo} log(1 + 1/x^2) dx.
Equals Integral_{x=0..oo} log(1 + x^2)/x^2 dx.
Equals Integral_{x=-oo..oo} exp(x/2)/(exp(x) + 1) dx. (End)
Equals 4*(1/2)!^2 = 4*Gamma(3/2)^2. - Gary W. Adamson, Aug 23 2021
From Peter Bala, Dec 08 2021: (Start)
Pi = 32*Sum_{n >= 1} (-1)^n*n^2/((4*n^2 - 1)*(4*n^2 - 9))= 384*Sum_{n >= 1} (-1)^(n+1)*n^2/((4*n^2 - 1)*(4*n^2 - 9)*(4*n^2 - 25)).
More generally, it appears that for k = 1,2,3,..., Pi = 16*(2*k)!*Sum_{n >= 1} (-1)^(n+k+1)*n^2/((4*n^2 - 1)* ... *(4*n^2 - (2*k+1)^2)).
Pi = 32*Sum_{n >= 1} (-1)^(n+1)*n^2/(4*n^2 - 1)^2 = 768*Sum_{n >= 1} (-1)^(n+1)*n^2/((4*n^2 - 1)^2*(4*n^2 - 9)^2).
More generally, it appears that for k = 0,1,2,..., Pi = 16*Catalan(k)*(2*k)!*(2*k+2)!*Sum_{n >= 1} (-1)^(n+1)*n^2/((4*n^2 - 1)^2* ... *(4*n^2 - (2*k+1)^2)^2).
Pi = (2^8)*Sum_{n >= 1} (-1)^(n+1)*n^2/(4*n^2 - 1)^4 = (2^17)*(3^5)*Sum_{n >= 2} (-1)^n*n^2*(n^2 - 1)/((4*n^2 - 1)^4*(4*n^2 - 9)^4) = (2^27)*(3^5)*(5^5)* Sum_{n >= 3} (-1)^(n+1)*n^2*(n^2 - 1)*(n^2 - 4)/((4*n^2 - 1)^4*(4*n^2 - 9)^4*(4*n^2 - 25)^4). (End)
For odd n, Pi = (2^(n-1)/A001818((n-1)/2))*gamma(n/2)^2. - Alan Michael Gómez Calderón, Mar 11 2022
Pi = 4/phi + Sum_{n >= 0} (1/phi^(12*n)) * ( 8/((12*n+3)*phi^3) + 4/((12*n+5)*phi^5) - 4/((12*n+7)*phi^7) - 8/((12*n+9)*phi^9) - 4/((12*n+11)*phi^11) + 4/((12*n+13)*phi^13) ) where phi = (1+sqrt(5))/2. - Chittaranjan Pardeshi, May 16 2022
Pi = sqrt(3)*(27*S - 36)/24, where S = A248682. - Peter Luschny, Jul 22 2022
Equals Integral_{x=0..1} 1/sqrt(x-x^2) dx. - Michal Paulovic, Sep 24 2023
From Peter Bala, Oct 28 2023: (Start)
Pi = 48*Sum_{n >= 0} (-1)^n/((6*n + 1)*(6*n + 3)*(6*n + 5)).
More generally, it appears that for k >= 0 we have Pi = A(k) + B(k)*Sum_{n >= 0} (-1)^n/((6*n + 1)*(6*n + 3)*...*(6*n + 6*k + 5)), where A(k) is a rational approximation to Pi and B(k) = (3 * 2^(3*k+3) * (3*k + 2)!) / (2^(3*k+1) - (-1)^k). The first few values of A(k) for k >= 0 are [0, 256/85, 65536/20955, 821559296/261636375, 6308233216/2008080987, 908209489444864/289093830828075, ...].
Pi = 16/5 - (288/5)*Sum_{n >= 0} (-1)^n * (6*n + 1)/((6*n + 1)*(6*n + 3)*...*(6*n + 9)).
More generally, it appears that for k >= 0 we have Pi = C(k) + D(k)*Sum_{n >= 0} (-1)^n* (6*n + 1)/((6*n + 1)*(6*n + 3)*...*(6*n + 6*k + 3)), where C(k) and D(k) are rational numbers. The case k = 0 is the Madhava-Gregory-Leibniz series for Pi.
Pi = 168/53 + (288/53)*Sum_{n >= 0} (-1)^n * (42*n^2 + 25*n)/((6*n + 1)*(6*n + 3)*(6*n + 5)*(6*n + 7)).
More generally, it appears that for k >= 1 we have Pi = E(k) + F(k)*Sum_{n >= 0} (-1)^n * (6*(6*k + 1)*n^2 + (24*k + 1)*n)/((6*n + 1)*(6*n + 3)*...*(6*n + 6*k + 1)), where E(k) and F(k) are rational numbers. (End)
From Peter Bala, Nov 10 2023: (Start)
The series representation Pi = 4 * Sum_{k >= 0} 1/(4*k + 1) - 1/(4*k + 3) given above by Alexander R. Povolotsky, Dec 25 2008, is the case n = 0 of the more general result (obtained by the WZ method): for n >= 0, there holds
Pi = Sum_{j = 0.. n-1} 2^(j+1)/((2*j + 1)*binomial(2*j,j)) + 8*(n+1)!*Sum_{k >= 0} 1/((4*k + 1)*(4*k + 3)*...*(4*k + 2*n + 3)).
Letting n -> oo gives the rapidly converging series Pi = Sum_{j >= 0} 2^(j+1)/((2*j + 1)*binomial(2*j,j)) due to Euler.
More generally, it appears that for n >= 1, Pi = 1/(2*n-1)!!^2 * Sum_{j >= 0} (Product_{i = 0..2*n-1} j - i) * 2^(j+1)/((2*j + 1)*binomial(2*j,j)).
For any integer n, Pi = (-1)^n * 4 * Sum_{k >= 0} 1/(4*k + 1 + 2*n) - 1/(4*k + 3 - 2*n). (End)
Pi = Product_{k>=1} ((k^3*(k + 2)*(2*k + 1)^2)/((k + 1)^4*(2*k - 1)^2))^k. - Antonio Graciá Llorente, Jun 13 2024
Equals Integral_{x=0..2} sqrt(8 - x^2) dx - 2 (see Ambrisi and Rizzi). - Stefano Spezia, Jul 21 2024
Equals 3 + 4*Sum_{k>0} (-1)^(k+1)/(4*k*(1+k)*(1+2*k)) (see Wells at p. 53). - Stefano Spezia, Aug 31 2024
Equals 4*Integral_{x=0..1} sqrt(1 - x^2) dx = lim_{n->oo} (4/n^2)*Sum_{k=0..n} sqrt(n^2 - k^2) (see Finch). - Stefano Spezia, Oct 19 2024
EXAMPLE
3.1415926535897932384626433832795028841971693993751058209749445923078164062\
862089986280348253421170679821480865132823066470938446095505822317253594081\
284811174502841027019385211055596446229489549303819...
MAPLE
Digits := 110: Pi*10^104:
ListTools:-Reverse(convert(floor(%), base, 10)); # Peter Luschny, Oct 29 2019
MATHEMATICA
RealDigits[ N[ Pi, 105]] [[1]]
Table[ResourceFunction["NthDigit"][Pi, n], {n, 1, 102}] (* Joan Ludevid, Jun 22 2022; easy to compute a(10000000)=7 with this function; requires Mathematica 12.0+ *)
PROG
(Macsyma) py(x) := if equal(6, 6+x^2) then 2*x else (py(x:x/3), 3*%%-4*(%%-x)^3); py(3.); py(dfloat(%)); block([bfprecision:35], py(bfloat(%))) /* Bill Gosper, Sep 09 2002 */
(PARI) { default(realprecision, 20080); x=Pi; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b000796.txt", n, " ", d)); } \\ Harry J. Smith, Apr 15 2009
(PARI) A796=[]; A000796(n)={if(n>#A796, localprec(n*6\5+29); A796=digits(Pi\.1^(precision(Pi)-3))); A796[n]} \\ NOTE: as the other programs, this returns the n-th term of the sequence, with n = 1, 2, 3, ... and not n = 1, 0, -1, -2, .... - M. F. Hasler, Jun 21 2022
(PARI) first(n)= default(realprecision, n+10); digits(floor(Pi*10^(n-1))) \\ David A. Corneth, Jun 21 2022
(PARI) lista(nn, p=20)= {my(u=10^(nn+p+1), f(x, u)=my(n=1, q=u\x, r=q, s=1, t); while(t=(q\=(x*x))\(n+=2), r+=(s=-s)*t); r*4); digits((4*f(5, u)-f(239, u))\10^(p+2)); } \\ Machin-like, with p > the maximal number of consecutive 9-digits to be expected (A048940) - Ruud H.G. van Tol, Dec 26 2024
(Haskell) -- see link: Literate Programs
import Data.Char (digitToInt)
a000796 n = a000796_list (n + 1) !! (n + 1)
a000796_list len = map digitToInt $ show $ machin' `div` (10 ^ 10) where
machin' = 4 * (4 * arccot 5 unity - arccot 239 unity)
unity = 10 ^ (len + 10)
arccot x unity = arccot' x unity 0 (unity `div` x) 1 1 where
arccot' x unity summa xpow n sign
| term == 0 = summa
| otherwise = arccot'
x unity (summa + sign * term) (xpow `div` x ^ 2) (n + 2) (- sign)
where term = xpow `div` n
-- Reinhard Zumkeller, Nov 24 2012
(Haskell) -- See Niemeijer link and also Gibbons link.
a000796 n = a000796_list !! (n-1) :: Int
a000796_list = map fromInteger $ piStream (1, 0, 1)
[(n, a*d, d) | (n, d, a) <- map (\k -> (k, 2 * k + 1, 2)) [1..]] where
piStream z xs'@(x:xs)
| lb /= approx z 4 = piStream (mult z x) xs
| otherwise = lb : piStream (mult (10, -10 * lb, 1) z) xs'
where lb = approx z 3
approx (a, b, c) n = div (a * n + b) c
mult (a, b, c) (d, e, f) = (a * d, a * e + b * f, c * f)
-- Reinhard Zumkeller, Jul 14 2013, Jun 12 2013
(Magma) pi:=Pi(RealField(110)); Reverse(Intseq(Floor(10^105*pi))); // Bruno Berselli, Mar 12 2013
(Python) from sympy import pi, N; print(N(pi, 1000)) # David Radcliffe, Apr 10 2019
(Python)
from mpmath import mp
def A000796(n):
if n >= len(A000796.str): mp.dps = n*6//5+50; A000796.str = str(mp.pi-5/mp.mpf(10)**mp.dps)
return int(A000796.str[n if n>1 else 0])
A000796.str = '' # M. F. Hasler, Jun 21 2022
(SageMath)
m=125
x=numerical_approx(pi, digits=m+5)
a=[ZZ(i) for i in x.str(skip_zeroes=True) if i.isdigit()]
a[:m] # G. C. Greubel, Jul 18 2023
CROSSREFS
Cf. A001203 (continued fraction).
Pi in base b: A004601 (b=2), A004602 (b=3), A004603 (b=4), A004604 (b=5), A004605 (b=6), A004606 (b=7), A006941 (b=8), A004608 (b=9), this sequence (b=10), A068436 (b=11), A068437 (b=12), A068438 (b=13), A068439 (b=14), A068440 (b=15), A062964 (b=16), A224750 (b=26), A224751 (b=27), A060707 (b=60). - Jason Kimberley, Dec 06 2012
Decimal expansions of expressions involving Pi: A002388 (Pi^2), A003881 (Pi/4), A013661 (Pi^2/6), A019692 (2*Pi=tau), A019727 (sqrt(2*Pi)), A059956 (6/Pi^2), A060294 (2/Pi), A091925 (Pi^3), A092425 (Pi^4), A092731 (Pi^5), A092732 (Pi^6), A092735 (Pi^7), A092736 (Pi^8), A163973 (Pi/log(2)).
Cf. A001901 (Pi/2; Wallis), A002736 (Pi^2/18; Euler), A007514 (Pi), A048581 (Pi; BBP), A054387 (Pi; Newton), A092798 (Pi/2), A096954 (Pi/4; Machin), A097486 (Pi), A122214 (Pi/2), A133766 (Pi/4 - 1/2), A133767 (5/6 - Pi/4), A166107 (Pi; MGL).
KEYWORD
cons,nonn,nice,core,easy
EXTENSIONS
Additional comments from William Rex Marshall, Apr 20 2001
STATUS
approved
Squares of primes.
+10
608
4, 9, 25, 49, 121, 169, 289, 361, 529, 841, 961, 1369, 1681, 1849, 2209, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 16129, 17161, 18769, 19321, 22201, 22801, 24649, 26569, 27889, 29929, 32041, 32761, 36481
OFFSET
1,1
COMMENTS
Also 4, together with numbers n such that Sum_{d|n}(-1)^d = -A048272(n) = -3. - Benoit Cloitre, Apr 14 2002
Also, all solutions to the equation sigma(x) + phi(x) = 2x + 1. - Farideh Firoozbakht, Feb 02 2005
Unique numbers having 3 divisors (1, their square root, themselves). - Alexandre Wajnberg, Jan 15 2006
Smallest (or first) new number deleted at the n-th step in an Eratosthenes sieve. - Lekraj Beedassy, Aug 17 2006
Subsequence of semiprimes A001358. - Lekraj Beedassy, Sep 06 2006
Integers having only 1 factor other than 1 and the number itself. Every number in the sequence is a multiple of 1 factor other than 1 and the number itself. 4 : 2 is the only factor other than 1 and 4; 9 : 3 is the only factor other than 1 and 9; and so on. - Rachit Agrawal (rachit_agrawal(AT)daiict.ac.in), Oct 23 2007
The n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime. - Omar E. Pol, May 06 2008
There are 2 Abelian groups of order p^2 (C_p^2 and C_p x C_p) and no non-Abelian group. - Franz Vrabec, Sep 11 2008
Also numbers n such that phi(n) = n - sqrt(n). - Michel Lagneau, May 25 2012
For n > 1, n is the sum of numbers from A006254(n-1) to A168565(n-1). - Vicente Izquierdo Gomez, Dec 01 2012
A078898(a(n)) = 2. - Reinhard Zumkeller, Apr 06 2015
Let r(n) = (a(n) - 1)/(a(n) + 1); then Product_{n>=1} r(n) = (3/5) * (4/5) * (12/13) * (24/25) * (60/61) * ... = 2/5. - Dimitris Valianatos, Feb 26 2019
Numbers k such that A051709(k) = 1. - Jianing Song, Jun 27 2021
LINKS
Ray Chandler, Table of n, a(n) for n = 1..10000 (first 5000 terms from N. J. A. Sloane)
Nicholas John Bizzell-Browning, LIE scales: Composing with scales of linear intervallic expansion, Ph. D. Thesis, Brunel Univ. (UK, 2024). See p. 143.
R. P. Boas and N. J. A. Sloane, Correspondence, 1974
Brady Haran and Matt Parker, Squaring Primes, Numberphile video (2018).
Eric Weisstein's World of Mathematics, Prime Power.
FORMULA
n such that A062799(n) = 2. - Benoit Cloitre, Apr 06 2002
A000005(a(n)^(k-1)) = A005408(k) for all k>0. - Reinhard Zumkeller, Mar 04 2007
a(n) = A000040(n)^(3-1)=A000040(n)^2, where 3 is the number of divisors of a(n). - Omar E. Pol, May 06 2008
A000005(a(n)) = 3 or A002033(a(n)) = 2. - Juri-Stepan Gerasimov, Oct 10 2009
A033273(a(n)) = 3. - Juri-Stepan Gerasimov, Dec 07 2009
For n > 2: (a(n) + 17) mod 12 = 6. - Reinhard Zumkeller, May 12 2010
A192134(A095874(a(n))) = A005722(n) + 1. - Reinhard Zumkeller, Jun 26 2011
For n > 2: a(n) = 1 (mod 24). - Zak Seidov, Dec 07 2011
A211110(a(n)) = 2. - Reinhard Zumkeller, Apr 02 2012
a(n) = A087112(n,n). - Reinhard Zumkeller, Nov 25 2012
a(n) = prime(n)^2. - Jon E. Schoenfield, Mar 29 2015
Product_{n>=1} a(n)/(a(n)-1) = Pi^2/6. - Daniel Suteu, Feb 06 2017
Sum_{n>=1} 1/a(n) = P(2) = 0.4522474200... (A085548). - Amiram Eldar, Jul 27 2020
From Amiram Eldar, Jan 23 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(2)/zeta(4) = 15/Pi^2 (A082020).
Product_{n>=1} (1 - 1/a(n)) = 1/zeta(2) = 6/Pi^2 (A059956). (End)
MAPLE
A001248:=n->ithprime(n)^2; seq(A001248(k), k=1..50); # Wesley Ivan Hurt, Oct 11 2013
MATHEMATICA
Prime[Range[30]]^2 (* Zak Seidov, Dec 07 2011 *)
Select[Range[40000], DivisorSigma[0, #] == 3 &] (* Carlos Eduardo Olivieri, Jun 01 2015 *)
PROG
(PARI) forprime(p=2, 1e3, print1(p^2", ")) \\ Charles R Greathouse IV, Jun 10 2011
(PARI) A001248(n)=prime(n)^2 \\ M. F. Hasler, Sep 16 2012
(Haskell)
a001248 n = a001248_list !! (n-1)
a001248_list = map (^ 2) a000040_list -- Reinhard Zumkeller, Sep 23 2011
(Magma) [p^2: p in PrimesUpTo(300)]; // Vincenzo Librandi, Mar 27 2014
(SageMath) [n^2 for n in prime_range(1, 301)] # G. C. Greubel, May 02 2024
(Python)
from sympy import prime
def A001248(n): return prime(n)**2 # Chai Wah Wu, Aug 09 2024
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved
Apéry's number or Apéry's constant zeta(3). Decimal expansion of zeta(3) = Sum_{m >= 1} 1/m^3.
(Formerly M0020)
+10
481
1, 2, 0, 2, 0, 5, 6, 9, 0, 3, 1, 5, 9, 5, 9, 4, 2, 8, 5, 3, 9, 9, 7, 3, 8, 1, 6, 1, 5, 1, 1, 4, 4, 9, 9, 9, 0, 7, 6, 4, 9, 8, 6, 2, 9, 2, 3, 4, 0, 4, 9, 8, 8, 8, 1, 7, 9, 2, 2, 7, 1, 5, 5, 5, 3, 4, 1, 8, 3, 8, 2, 0, 5, 7, 8, 6, 3, 1, 3, 0, 9, 0, 1, 8, 6, 4, 5, 5, 8, 7, 3, 6, 0, 9, 3, 3, 5, 2, 5, 8, 1, 4, 6, 1, 9, 9, 1, 5
OFFSET
1,2
COMMENTS
Sometimes called Apéry's constant.
"A natural question is whether Zeta(3) is a rational multiple of Pi^3. This is not known, though in 1978 R. Apéry succeeded in proving that Zeta(3) is irrational. In Chapter 8 we pointed out that the probability that two random integers are relatively prime is 6/Pi^2, which is 1/Zeta(2). This generalizes to: The probability that k random integers are relatively prime is 1/Zeta(k) ... ." [Stan Wagon]
In 2001 Tanguy Rivoal showed that there are infinitely many odd (positive) integers at which zeta is irrational, including at least one value j in the range 5 <= j <= 21 (refined the same year by Zudilin to 5 <= j <= 11), at which zeta(j) is irrational. See the Rivoal link for further information and references.
The reciprocal of this constant is the probability that three integers chosen randomly using uniform distribution are relatively prime. - Joseph Biberstine (jrbibers(AT)indiana.edu), Apr 13 2005
Also the value of zeta(1,2), the double zeta-function of arguments 1 and 2. - R. J. Mathar, Oct 10 2011
Also the length of minimal spanning tree for large complete graph with uniform random edge lengths between 0 and 1, cf. link to John Baez's comment. - M. F. Hasler, Sep 26 2017
Sum of the inverses of the cubes (A000578). - Michael B. Porter, Nov 27 2017
This number is the average value of sigma_2(n)/n^2 where sigma_2(n) is the sum of the squares of the divisors of n. - Dimitri Papadopoulos, Jan 07 2022
REFERENCES
S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, pp. 40-53, 500.
A. Fletcher, J. C. P. Miller, L. Rosenhead, and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 84.
R. William Gosper, Strip Mining in the Abandoned Orefields of Nineteenth Century Mathematics, Computers in Mathematics (Stanford CA, 1986); Lecture Notes in Pure and Appl. Math., Dekker, New York, 125 (1990), 261-284; MR 91h:11154.
Xavier Gourdon, Analyse, Les Maths en tête, Ellipses, 1994, Exemple 3, page 224.
Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section F17, Series associated with the zeta-function, p. 391.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press; 6 edition (2008), pp. 47, 268-269.
Paul Levrie, The Ubiquitous Apéry Number, Math. Intelligencer, Vol. 45, No. 2, 2023, pp. 118-119.
A. A. Markoff, Mémoire sur la transformation de séries peu convergentes en séries très convergentes, Mém. de l'Acad. Imp. Sci. de St. Pétersbourg, XXXVII, 1890.
Paul J. Nahin, In Pursuit of Zeta-3, Princeton University Press, 2021.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Stan Wagon, Mathematica In Action, W. H. Freeman and Company, NY, 1991, page 354.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 33.
A. M. Yaglom and I. M. Yaglom, Challenging Mathematical Problems with Elementary Solutions, Dover (1987), Ex. 92-93.
LINKS
T. Amdeberhan, Faster and Faster convergent series for zeta(3), arXiv:math/9804126 [math.CO], 1998.
Kunihiro Aoki and Ryo Furue, A model for the size distribution of marine microplastics: a statistical mechanics approach, arXiv:2103.10221 [physics.ao-ph], 2021.
Peter Bala, Some series for zeta(3), Nov 2023.
John Baez, Comments about zeta(3), Azimuth Project blog, August 2017.
R. Barbieri, J. A. Mignaco, and E. Remiddi, Electron form factors up to fourth order. I., Il Nuovo Cim. 11A (4) (1972) 824-864, table II (7), (9), (19).
F. Beukers, A Note on the Irrationality of zeta(2) and zeta(3), Bull. London Math. Soc., 11 (3) (1979): 268-272.
J. Borwein and D. Bradley, Empirically determined Apéry-like formulas for zeta(4n+3), arXiv:math/0505124 [math.CA], 2005.
Mainendra Kumar Dewangan and Subhra Datta, Effective permeability tensor of confined flows with wall grooves of arbitrary shape, J. of Fluid Mechanics (2020) Vol. 891.
L. Euler, On the sums of series of reciprocals, arXiv:math/0506415 [math.HO], 2005-2008.
X. Gourdon and P. Sebah, The Apery's constant: zeta(3).
Brady Haran and Tony Padilla, Apéry's constant (calculated with Twitter), Numberphile video (2017).
W. Janous, Around Apéry's constant, J. Inequ. Pure Appl. Math. 7(1) (2006), #35.
Yasuyuki Kachi and Pavlos Tzermias, Infinite products involving zeta(3) and Catalan's constant, Journal of Integer Sequences, 15 (2012), #12.9.4.
Masato Kobayashi, Integral representations for zeta(3) with the inverse sine function, arXiv:2108.01247 [math.NT], 2021.
M. Kondratiewa and S. Sadov, Markov's transformation of series and the WZ method, arXiv:math/0405592 [math.CA], 2004.
Tobias Kyrion, A closed-form expression for zeta(3), arXiv:2008.05573 [math.GM], 2020.
C. Lupu and D. Orr, Series representations for the Apéry constant zeta(3) involving the values zeta(2n), Ramanujan J. 48(3) (2019), 477-494.
R. J. Mathar, Yet another table of integrals, arXiv:1207.5845 [math.CA], 2012-2014.
G. P. Michon, Roger Apéry, Numericana.
Michael Penn, Euler's harmonic number identity, YouTube video, 2020.
Simon Plouffe, Zeta(2) to Zeta(4096) to 2048 digits each (gzipped file).
A. van der Poorten, A Proof that Euler Missed.
Ernst E. Scheufens, From Fourier series to rapidly convergent series for zeta(3), Mathematics Magazine, Vol. 84, No. 1 (2011), pp. 26-32.
G. Villemin's Almanach of Numbers, Constante d'Apéry (in French).
S. Wedeniwski, The value of zeta(3) to 1000000 places [Gutenberg Project Etext].
S. Wedeniwski, Plouffe's Inverter, Apery's constant to 128000026 decimal digits.
Eric Weisstein's World of Mathematics, Apéry's Constant.
Eric Weisstein's World of Mathematics, Relatively Prime.
H. Wilf, Accelerated series for universal constants, by the WZ method, Discrete Mathematics and Theoretical Computer Science 3(4) (1999), 189-192.
Wenzhe Yang, Apéry's irrationality proof, mirror symmetry and Beukers' modular forms, arXiv:1911.02608 [math.NT], 2019.
Wadim Zudilin, An elementary proof of Apéry's theorem, arXiv:math/0202159 [math.NT], 2002.
FORMULA
Lima gives an approximation to zeta(3) as (236*log(2)^3)/197 - 283/394*Pi*log(2)^2 + 11/394*Pi^2*log(2) + 209/394*log(sqrt(2) + 1)^3 - 5/197 + (93*Catalan*Pi)/197. - Jonathan Vos Post, Oct 14 2009 [Corrected by Wouter Meeussen, Apr 04 2010]
zeta(3) = 5/2*Integral_(x=0..2*log((1+sqrt(5))/2), x^2/(exp(x)-1)) + 10/3*(log((1+sqrt(5))/2))^3. - Seiichi Kirikami, Aug 12 2011
zeta(3) = -4/3*Integral_{x=0..1} log(x)/x*log(1+x) = Integral_{x=0..1} log(x)/x*log(1-x) = -4/7*Integral_{x=0..1} log(x)/x*log((1+x)/(1-x)) = 4*Integral_{x=0..1} 1/x*log(1+x)^2 = 1/2*Integral_{x=0..1} 1/x*log(1-x)^2 = -16/7*Integral_{x=0..Pi/2} x*log(2*cos(x)) = -4/Pi*Integral_{x=0..Pi/2} x^2*log(2*cos(x)). - Jean-François Alcover, Apr 02 2013, after R. J. Mathar
From Peter Bala, Dec 04 2013: (Start)
zeta(3) = (16/7)*Sum_{k even} (k^3 + k^5)/(k^2 - 1)^4.
zeta(3) - 1 = Sum_{k >= 1} 1/(k^3 + 4*k^7) = 1/(5 - 1^6/(21 - 2^6/(55 - 3^6/(119 - ... - (n - 1)^6/((2*n - 1)*(n^2 - n + 5) - ...))))) (continued fraction).
More generally, there is a sequence of polynomials P(n,x) (of degree 2*n) such that
zeta(3) - Sum_{k = 1..n} 1/k^3 = Sum_{k >= 1} 1/( k^3*P(n,k-1)*P(n,k) ) = 1/((2*n^2 + 2*n + 1) - 1^6/(3*(2*n^2 + 2*n + 3) - 2^6/(5*(2*n^2 + 2*n + 7) - 3^6/(7*(2*n^2 + 2*n + 13) - ...)))) (continued fraction). See A143003 and A143007 for details.
Series acceleration formulas:
zeta(3) = (5/2)*Sum_{n >= 1} (-1)^(n+1)/( n^3*binomial(2*n,n) )
= (5/2)*Sum_{n >= 1} P(n)/( (2*n(2*n - 1))^3*binomial(4*n,2*n) )
= (5/2)*Sum_{n >= 1} (-1)^(n+1)*Q(n)/( (3*n(3*n - 1)*(3*n - 2))^3*binomial(6*n,3*n) ), where P(n) = 24*n^3 + 4*n^2 - 6*n + 1 and Q(n) = 9477*n^6 - 11421*n^5 + 5265*n^4 - 1701*n^3 + 558*n^2 - 108*n + 8 (Bala, section 7). (End)
zeta(3) = Sum_{n >= 1} (A010052(n)/n^(3/2)) = Sum_{n >= 1} ( (floor(sqrt(n)) - floor(sqrt(n-1)))/n^(3/2) ). - Mikael Aaltonen, Feb 22 2015
zeta(3) = Product_{k>=1} 1/(1 - 1/prime(k)^3). - Vaclav Kotesovec, Apr 30 2020
zeta(3) = 4*(2*log(2) - 1 - 2*Sum_{k>=2} zeta(2*k+1)/2^(2*k+1)). - Jorge Coveiro, Jun 21 2020
zeta(3) = (4*zeta'''(1/2)*(zeta(1/2))^2-12*zeta(1/2)*zeta'(1/2)*zeta''(1/2)+8*(zeta'(1/2))^3-Pi^3*(zeta(1/2))^3)/(28*(zeta(1/2))^3). - Artur Jasinski, Jun 27 2020
zeta(3) = Sum_{k>=1} H(k)/(k+1)^2, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - Amiram Eldar, Jul 31 2020
From Artur Jasinski, Sep 30 2020: (Start)
zeta(3) = (5/4)*Li_3(1/f^2) + Pi^2*log(f)/6 - 5*log(f)^3/6,
zeta(3) = (8/7)*Li_3(1/2) + (2/21)*Pi^2 log(2) - (4/21) log(2)^3, where f is golden ratio (A001622) and Li_3 is the polylogarithm function, formulas published by John Landen in 1780, p. 118. (End)
zeta(3) = (1/2)*Integral_{x=0..oo} x^2/(e^x-1) dx (Gourdon). - Bernard Schott, Apr 28 2021
From Peter Bala, Jan 18 2022: (Start)
zeta(3) = 1 + Sum_{n >= 1} 1/(n^3*(4*n^4 + 1)) = 25/24 + (2!)^4*Sum_{n >= 1} 1/(n^3*(4*n^4 + 1)*(4*n^4 + 2^4)) = 28333/27000 + (3!)^4*Sum_{n >= 1} 1/(n^3*(4*n^4 + 1)*(4*n^4 + 2^4)*(4*n^4 + 3^4)). In general, for k >= 1, we have zeta(3) = r(k) + (k!)^4*Sum_{n >= 1} 1/(n^3*(4*n^4 + 1)*...*(4*n^4 + k^4)), where r(k) is rational.
zeta(3) = (6/7) + (64/7)*Sum_{n >= 1} n/(4*n^2 - 1)^3.
More generally, for k >= 0, it appears that zeta(3) = a(k) + b(k)*Sum_{n >= 1} n/( (4*n^2 - 1)*(4*n^2 - 9)*...*(4*n^2 - (2*k+1)^2) )^3, where a(k) and b(k) are rational.
zeta(3) = (10/7) - (128/7)*Sum_{n >= 1} n/(4*n^2 - 1)^4.
More generally, for k >= 0, it appears that zeta(3) = c(k) + d(k)*Sum_{n >= 1} n/( (4*n^2 - 1)*(4*n^2 - 9)*...*(4*n^2 - (2*k+1)^2) )^4, where c(k) and d(k) are rational. [added Nov 27 2023: for the values of a(k), b(k), c(k) and d(k) see the Bala 2023 link, Sections 8 and 9.]
zeta(3) = 2/3 + (2^13)/(3*7)*Sum_{n >= 1} n^3/(4*n^2 - 1)^6. (End)
zeta(3) = -Psi(2)(1/2)/14 (the second derivative of digamma function evaluated at 1/2). - Artur Jasinski, Mar 18 2022
zeta(3) = -(8*Pi^2/9) * Sum_{k>=0} zeta(2*k)/((2*k+1)*(2*k+3)*4^k) = (2*Pi^2/9) * (log(2) + 2 * Sum_{k>=0} zeta(2*k)/((2*k+3)*4^k)) (Scheufens, 2011, Glasser Math. Comp. 22 1968). - Amiram Eldar, May 28 2022
zeta(3) = Sum_{k>=1} (30*k-11) / (4*(2k-1)*k^3*(binomial(2k,k))^2) (Gosper, 1986 and Richard K. Guy reference). - Bernard Schott, Jul 20 2022
zeta(3) = (4/3)*Integral_{x >= 1} x*log(x)*(1 + log(x))*log(1 + 1/x^x) dx = (2/3)*Integral_{x >= 1} x^2*log(x)^2*(1 + log(x))/(1 + x^x) dx. - Peter Bala, Nov 27 2023
zeta_3(n) = 1/180*(-360*n^3*f(-3, n/4) + Pi^3*(n^4 + 20*n^2 + 16))/(n*(n^2 + 4)), where f(-3, n) = Sum_{k>=1} 1/(k^3*(exp(Pi*k/n) - 1)). Will give at least 1 digit of precision/term, example: zeta_3(5) = 1.202056944732.... - Simon Plouffe, Dec 21 2023
zeta(3) = 1 + (1/2)*Sum_{n >= 1} (2*n + 1)/(n^3*(n + 1)^3) = 5/4 - (1/4)*Sum_{n >= 1} (2*n + 1)/(n^4*(n + 1)^4) = 147/120 + (2/15)*Sum_{n >= 1} (2*n + 1)/(n^5*(n + 1)^5) - (64/15)*Sum_{n >= 1} (n + 1)/(n^5*(n + 2)^5) = 19/16 + (128/21)*Sum_{n >= 1} (n + 1)/(n^6*(n + 2)^6) - (1/21)*Sum_{n >= 1} (2*n + 1)/(n^6*(n + 1)^6). - Peter Bala, Apr 15 2024
Equals 7*Pi^3/180 - 2*Sum_{k>=1} 1/(k^3*(exp(2*Pi*k) - 1)) [Grosswald] (see Finch). - Stefano Spezia, Nov 01 2024
Equals 10*Integral_{x=0..1/2} arcsinh(x)^2/x dx = -5*Integral_{x=0..2*log(phi)} x*log(2*sinh(x/2))dx [Munthe Hjortnaes] (see Finch). - Stefano Spezia, Nov 03 2024
Equals Li_3(1) = Integral_{x=0..1} Li_2(x)/x dx = Integral_{x=0..1} Integral_{y=0..1} Li_1(xy)/xy dydx = Integral_{x=0..1} Integral_{y=0..1} Integral_{z=0..1} Li_0(xyz)/xyz dzdydx (see Beukers), in general Integral_{x_1,...,x_k=0..1} Li_{3-k}(Product_{n=1..k} x_n)/(Product_{n=1..k} x_n) dx_k...dx_1 = zeta(3), for any k > 0. - Miko Labalan, Dec 23 2024
zeta(3) = (1/2)*Sum_{m >= 1}(Sum_{n >= 1} 1/(m*n*(m+n))). - Ricardo Bittencourt, Feb 24 2025
EXAMPLE
1.2020569031595942853997...
MAPLE
# Calculates an approximation with n exact decimal places (small deviation
# in the last digits are possible). Goes back to ideas of A. A. Markoff 1890.
zeta3 := proc(n) local s, w, v, k; s := 0; w := -1; v := 4;
for k from 2 by 2 to 7*n/2 do
w := -w*v/k;
v := v + 8;
s := s + 1/(w*k^3);
od; 20*s; evalf(%, n) end:
zeta3(10000); # Peter Luschny, Jun 10 2020
MATHEMATICA
RealDigits[ N[ Zeta[3], 100] ] [ [1] ]
(* Second program (historical interest): *)
d[n_] := 34*n^3 + 51*n^2 + 27*n + 5; 6/Fold[Function[d[#2-1] - #2^6/#1], 5, Reverse[Range[100]]] // N[#, 108]& // RealDigits // First
(* Jean-François Alcover, Sep 19 2014, after Apéry's continued fraction *)
PROG
(PARI) default(realprecision, 20080); x=zeta(3); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b002117.txt", n, " ", d)); \\ Harry J. Smith, Apr 19 2009
(Maxima) fpprec : 100$ ev(bfloat(zeta(3)))$ bfloat(%); /* Martin Ettl, Oct 21 2012 */
(Python)
from mpmath import mp, apery
mp.dps=109
print([int(z) for z in list(str(apery).replace('.', ''))[:-1]]) # Indranil Ghosh, Jul 08 2017
(Magma) L:=RiemannZeta(: Precision:=100); Evaluate(L, 3); // G. C. Greubel, Aug 21 2018
CROSSREFS
Cf. A197070: 3*zeta(3)/4; A233090: 5*zeta(3)/8; A233091: 7*zeta(3)/8.
Cf. A000578 (cubes).
Cf. sums of inverses: A152623 (tetrahedral numbers), A175577 (octahedral numbers), A295421 (dodecahedral numbers), A175578 (icosahedral numbers).
KEYWORD
cons,nonn,nice,changed
EXTENSIONS
More terms from David W. Wilson
Additional comments from Robert G. Wilson v, Dec 08 2000
Quotation from Stan Wagon corrected by N. J. A. Sloane on Dec 24 2005. Thanks to Jose Brox for noticing this error.
Edited by M. F. Hasler, Sep 26 2017
STATUS
approved
Decimal expansion of Pi^2/6 = zeta(2) = Sum_{m>=1} 1/m^2.
+10
432
1, 6, 4, 4, 9, 3, 4, 0, 6, 6, 8, 4, 8, 2, 2, 6, 4, 3, 6, 4, 7, 2, 4, 1, 5, 1, 6, 6, 6, 4, 6, 0, 2, 5, 1, 8, 9, 2, 1, 8, 9, 4, 9, 9, 0, 1, 2, 0, 6, 7, 9, 8, 4, 3, 7, 7, 3, 5, 5, 5, 8, 2, 2, 9, 3, 7, 0, 0, 0, 7, 4, 7, 0, 4, 0, 3, 2, 0, 0, 8, 7, 3, 8, 3, 3, 6, 2, 8, 9, 0, 0, 6, 1, 9, 7, 5, 8, 7, 0
OFFSET
1,2
COMMENTS
"In 1736 he [Leonard Euler, 1707-1783] discovered the limit to the infinite series, Sum 1/n^2. He did it by doing some rather ingenious mathematics using trigonometric functions that proved the series summed to exactly Pi^2/6. How can this be? ... This demonstrates one of the most startling characteristics of mathematics - the interconnectedness of, seemingly, unrelated ideas." - Clawson [See Hardy and Wright, Theorems 332 and 333. - N. J. A. Sloane, Jan 20 2017]
Also dilogarithm(1). - Rick L. Shepherd, Jul 21 2004
Also Integral_{x>=0} x/(exp(x)-1) dx. [Abramowitz-Stegun, 23.2.7., for s=2, p. 807]
For the partial sums see the fractional sequence A007406/A007407.
Pi^2/6 is also the length of the circumference of a circle whose diameter equals the ratio of volume of an ellipsoid to the circumscribed cuboid. Pi^2/6 is also the length of the circumference of a circle whose diameter equals the ratio of surface area of a sphere to the circumscribed cube. - Omar E. Pol, Oct 07 2011
1 < n^2/(eulerphi(n)*sigma(n)) < zeta(2) for n > 1. - Arkadiusz Wesolowski, Sep 04 2012
Volume of a sphere inscribed in a cube of volume Pi. More generally, Pi^x/6 is the volume of an ellipsoid inscribed in a cuboid of volume Pi^(x-1). - Omar E. Pol, Feb 17 2016
Surface area of a sphere inscribed in a cube of surface area Pi. More generally, Pi^x/6 is the surface area of a sphere inscribed in a cube of surface area Pi^(x-1). - Omar E. Pol, Feb 19 2016
zeta(2)+1 is a weighted average of the integers, n > 2, using zeta(n)-1 as the weights for each n. We have: Sum_{n >= 2} (zeta(n)-1) = 1 and Sum_{n >= 2} n*(zeta(n)-1) = zeta(2)+1. - Richard R. Forberg, Jul 14 2016
zeta(2) is the expected value of sigma(n)/n. - Charlie Neder, Oct 22 2018
Graham shows that a rational number x can be expressed as a finite sum of reciprocals of distinct squares if and only if x is in [0, Pi^2/6-1) U [1, Pi^2/6). See section 4 for other results and Theorem 5 for the underlying principle. - Charles R Greathouse IV, Aug 04 2020
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.
F. Aubonnet, D. Guinin and B. Joppin, Précis de Mathématiques, Analyse 2, Classes Préparatoires, Premier Cycle Universitaire, Bréal, 1990, Exercice 908, pages 82 and 91-92.
Calvin C. Clawson, Mathematical Mysteries, The Beauty and Magic of Numbers, Perseus Books, 1996, p. 97.
W. Dunham, Euler: The Master of Us All, The Mathematical Association of America, Washington, D.C., 1999, p. xxii.
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 1.4.1 and 5.16, pp. 20, 365.
Hardy and Wright, 'An Introduction to the Theory of Numbers'. See Theorems 332 and 333.
A. A. Markoff, Mémoire sur la transformation de séries peu convergentes en séries très convergentes, Mém. de l'Acad. Imp. Sci. de St. Pétersbourg, XXXVII, 1890.
G. F. Simmons, Calculus Gems, Section B.15, B.24, pp. 270-271, 323-325, McGraw Hill, 1992.
Arnold Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, Deutscher Verlag der Wissenschaften, Berlin, 1963, p. 99, Satz 1.
A. Weil, Number theory: an approach through history; from Hammurapi to Legendre, Birkhäuser, Boston, 1984; see p. 261.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, Penguin Books, London, England, 1997, page 23.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
D. H. Bailey, J. M. Borwein, and D. M. Bradley, Experimental determination of Apéry-like identities for zeta(4n+2), arXiv:math/0505270 [math.NT], 2005-2006.
David Benko and John Molokach, The Basel Problem as a Rearrangement of Series, The College Mathematics Journal, Vol. 44, No. 3 (May 2013), pp. 171-176.
R. Calinger, Leonard Euler: The First St. Petersburg Years (1727-1741), Historia Mathematica, Vol. 23, 1996, pp. 121-166.
Alessio Del Vigna, On a solution to the Basel problem based on the fundamental theorem of calculus, arXiv:2104.01710 [math.HO], 2021.
Leonhard Euler, On the sums of series of reciprocals, arXiv:math/0506415 [math.HO], 2005-2008.
Leonhard Euler, De summis serierum reciprocarum, E41.
R. L. Graham, On finite sums of unit fractions, Proceedings of the London Mathematical Society, s3-14 (1964), pp. 193-207. doi:10.1112/plms/s3-14.2.193
Michael D. Hirschhorn, A simple proof that zeta(2) = Pi^2/6, The Mathematical Intelligencer 33:3 (2011), pp 81-82.
Alain Lasjaunias and Jean-Paul Tran, A note on the equality Pi^2/6 = Sum_{n>=1} 1/n^2, arXiv:2312.02245 [math.HO], 2023.
Math. Reference Project, The Zeta Function, Zeta(2).
Simon Plouffe, Plouffe's Inverter, Zeta(2) or Pi**2/6 to 100000 digits.
Simon Plouffe, Zeta(2) to Zeta(4096) to 2048 digits each (gzipped file)
A. L. Robledo, value of the Riemann zeta function at s=2, PlanetMath.org.
E. Sandifer, How Euler Did It, Estimating the Basel Problem.
E. Sandifer, How Euler Did It, Basel Problem with Integrals.
Eric Weisstein's World of Mathematics, Dilogarithm.
Eric Weisstein's World of Mathematics, Riemann Zeta Function zeta(2).
Wikipedia, Basel Problem.
Herbert S. Wilf, Accelerated series for universal constants, by the WZ method, Discrete Mathematics & Theoretical Computer Science, Vol 3, No 4 (1999).
FORMULA
Limit_{n->oo} (1/n)*(Sum_{k=1..n} frac((n/k)^(1/2))) = zeta(2) and in general we have lim_{n->oo} (1/n)*(Sum_{k=1..n} frac((n/k)^(1/m))) = zeta(m), m >= 2. - Yalcin Aktar, Jul 14 2005
Equals Integral_{x=0..1} (log(x)/(x-1)) dx or Integral_{x>=1} (log(x/(x-1))/x) dx. - Jean-François Alcover, May 30 2013
For s >= 2 (including Complex), zeta(s) = Product_{n >= 1} prime(n)^s/(prime(n)^s - 1). - Fred Daniel Kline, Apr 10 2014
Also equals 1 + Sum_{n>=0} (-1)^n*StieltjesGamma(n)/n!. - Jean-François Alcover, May 07 2014
zeta(2) = Sum_{n>=1} ((floor(sqrt(n)) - floor(sqrt(n-1)))/n). - Mikael Aaltonen, Jan 10 2015
zeta(2) = Sum_{n>=1} (((sqrt(5)-1)/2/sqrt(5))^n/n^2) + Sum_{n>=1} (((sqrt(5)+1)/2/sqrt(5))^n/ n^2) + log((sqrt(5)-1)/2/sqrt(5))log((sqrt(5)+1)/2/sqrt(5)). - Seiichi Kirikami, Oct 14 2015
The above formula can also be written zeta(2) = dilog(x) + dilog(y) + log(x)*log(y) where x = (1-1/sqrt(5))/2 and y=(1+1/sqrt(5))/2. - Peter Luschny, Oct 16 2015
zeta(2) = Integral_{x>=0} 1/(1 + e^x^(1/2)) dx, because (1 - 1/2^(s-1))*Gamma[1 + s]*Zeta[s] = Integral_{x>=0} 1/(1 + e^x^(1/s)) dx. After Jean-François Alcover in A002162. - Mats Granvik, Sep 12 2016
zeta(2) = Product_{n >= 1} (144*n^4)/(144*n^4 - 40*n^2 + 1). - Fred Daniel Kline, Oct 29 2016
zeta(2) = lim_{n->oo} (1/n) * Sum_{k=1..n} A017665(k)/A017666(k). - Dimitri Papadopoulos, May 10 2019 [See the Walfisz reference, and a comment in A284648, citing also the Sándor et al. Handbook. - Wolfdieter Lang, Aug 22 2019]
Equals Sum_{k>=1} H(k)/(k*(k+1)), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - Amiram Eldar, Aug 16 2020
Equals (8/3)*(1/2)!^4 = (8/3)*Gamma(3/2)^4. - Gary W. Adamson, Aug 17 2021
Equals ((m+1)/m) * Integral_{x=0..1} log(Sum _{k=0..m} x^k )/x dx, m > 0 (Aubonnet reference). - Bernard Schott, Feb 11 2022
Equals 1 + Sum_{n>=2} Sum_{i>=n+1} (zeta(i)-1). - Richard R. Forberg, Jun 04 2023
Equals Psi'(1) where Psi'(x) is the trigamma function (by Abramowitz Stegun 6.4.2). - Andrea Pinos, Oct 22 2024
EXAMPLE
1.6449340668482264364724151666460251892189499012067984377355582293700074704032...
MAPLE
evalf(Pi^2/6, 120); # Muniru A Asiru, Oct 25 2018
# Calculates an approximation with n exact decimal places (small deviation
# in the last digits are possible). Goes back to ideas of A. A. Markoff 1890.
zeta2 := proc(n) local q, s, w, v, k; q := 0; s := 0; w := 1; v := 4;
for k from 2 by 2 to 7*n/2 do
w := w*v/k;
q := q + v;
v := v + 8;
s := s + 1/(w*q);
od; 12*s; evalf[n](%) end:
zeta2(1000); # Peter Luschny, Jun 10 2020
MATHEMATICA
RealDigits[N[Pi^2/6, 100]][[1]]
RealDigits[Zeta[2], 10, 120][[1]] (* Harvey P. Dale, Jan 08 2021 *)
PROG
(PARI) default(realprecision, 200); Pi^2/6
(PARI) default(realprecision, 200); dilog(1)
(PARI) default(realprecision, 200); zeta(2)
(PARI) A013661(n)={localprec(n+2); Pi^2/.6\10^n%10} \\ Corrected and improved by M. F. Hasler, Apr 20 2021
(PARI) default(realprecision, 20080); x=Pi^2/6; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b013661.txt", n, " ", d)); \\ Harry J. Smith, Apr 29 2009
(PARI) sumnumrat(1/x^2, 1) \\ Charles R Greathouse IV, Jan 20 2022
(Maxima) fpprec : 100$ ev(bfloat(zeta(2)))$ bfloat(%); /* Martin Ettl, Oct 21 2012 */
(Magma) pi:=Pi(RealField(110)); Reverse(Intseq(Floor(10^105*pi^2/6))); // Vincenzo Librandi, Oct 13 2015
(Python) # Use some guard digits when computing.
# BBP formula (3 / 16) P(2, 64, 6, (16, -24, -8, -6, 1, 0)).
from decimal import Decimal as dec, getcontext
def BBPzeta2(n: int) -> dec:
getcontext().prec = n
s = dec(0); f = dec(1); g = dec(64)
for k in range(int(n * 0.5536546824812272) + 1):
sixk = dec(6 * k)
s += f * ( dec(16) / (sixk + 1) ** 2 - dec(24) / (sixk + 2) ** 2
- dec(8) / (sixk + 3) ** 2 - dec(6) / (sixk + 4) ** 2
+ dec(1) / (sixk + 5) ** 2 )
f /= g
return (s * dec(3)) / dec(16)
print(BBPzeta2(2000)) # Peter Luschny, Nov 01 2023
CROSSREFS
Cf. A001008 (H(n): numerators), A002805 (denominators), A013679 (continued fraction), A002117 (zeta(3)), A013631 (cont.frac. for zeta(3)), A013680 (cont.frac. for zeta(4)), 1/A059956, A108625, A142995, A142999.
Cf. A000290.
KEYWORD
cons,nonn,nice
EXTENSIONS
Edited by N. J. A. Sloane, Nov 22 2023
STATUS
approved
Gaps between squarefree numbers: a(n) = A005117(n+1) - A005117(n).
+10
111
1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 4, 2, 2, 2, 1, 1, 2, 1, 3, 1, 1, 2, 1, 1, 2, 1, 3, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 3, 1, 4, 2, 1, 1, 2, 1, 3, 1, 1, 2, 1, 1, 2, 1, 3, 2, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1
OFFSET
1,3
COMMENTS
This sequence is unbounded, as a simple consequence of the Chinese remainder theorem. - Thomas Ordowski, Jul 22 2015
Conjecture: lim sup_{n->oo} a(n)/log(A005117(n)) = 1/2. - Thomas Ordowski, Jul 23 2015 [Note: this conjecture is equivalent to lim sup a(n)/log n = 1/2. - Charles R Greathouse IV, Dec 05 2024]
a(n) = 1 infinitely often since the density of the squarefree numbers, 6/Pi^2, is greater than 1/2. In particular, at least 2 - Pi^2/6 = 35.5...% of the terms are 1. - Charles R Greathouse IV, Jul 23 2015
From Amiram Eldar, Mar 09 2021: (Start)
The asymptotic density of the occurrences of 1 in this sequence is density(A007674)/density(A005117) = A065474/A059956 = 0.530711... (A065469).
The asymptotic density of the occurrences of 2 in this sequence is (density(A069977)-density(A007675))/density(A005117) = (A065474-A206256)/A059956 = 0.324294... (End)
LINKS
Mayank Pandey, Squarefree numbers in short intervals, arXiv preprint, arXiv:2401.13981 [math.NT], 2024.
FORMULA
Asymptotic mean: lim_{n->oo} (1/n) Sum_{k=1..n} a(k) = Pi^2/6 (A013661). - Amiram Eldar, Oct 21 2020
a(n) < n^(1/5) for large enough n by a result of Pandey. (The constant Pi^2/6 can be absorbed by any eta > 0.) - Charles R Greathouse IV, Dec 04 2024
EXAMPLE
As 24 = 3*2^3 and 25 = 5^2, the next squarefree number greater A005117(16) = 23 is A005117(17) = 26, therefore a(16) = 26-23 = 3.
MAPLE
A076259 := proc(n) A005117(n+1)-A005117(n) ; end proc: # R. J. Mathar, Jan 09 2013
MATHEMATICA
Select[Range[200], SquareFreeQ] // Differences (* Jean-François Alcover, Mar 10 2019 *)
PROG
(Haskell)
a076259 n = a076259_list !! (n-1)
a076259_list = zipWith (-) (tail a005117_list) a005117_list
-- Reinhard Zumkeller, Aug 03 2012
(PARI) t=1; for(n=2, 1e3, if(issquarefree(n), print1(n-t", "); t=n)) \\ Charles R Greathouse IV, Jul 23 2015
(Python)
from math import isqrt
from sympy import mobius
def A076259(n):
def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
r, k = n+1, f(n+1)+1
while r != k:
r, k = k, f(k)+1
return int(r-m) # Chai Wah Wu, Aug 15 2024
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Oct 03 2002
STATUS
approved
First differences of sequence of nonsquarefree numbers, A013929.
+10
105
4, 1, 3, 4, 2, 2, 4, 1, 2, 1, 4, 4, 4, 4, 1, 3, 1, 1, 2, 2, 2, 4, 3, 1, 4, 4, 3, 1, 4, 1, 3, 4, 2, 2, 4, 2, 1, 1, 4, 4, 4, 4, 1, 3, 1, 3, 1, 1, 2, 4, 3, 1, 4, 4, 3, 1, 2, 2, 1, 3, 4, 2, 2, 4, 1, 2, 1, 3, 1, 4, 4, 4, 1, 3, 4, 2, 2, 4, 3, 1, 4, 4, 4, 4, 1, 3, 4, 2, 2, 4, 2, 1, 1, 1, 3, 2, 2, 4, 4, 1, 3, 4, 2, 2, 3
OFFSET
1,1
COMMENTS
Run lengths in A132345, apart from initial run of zeros. - Reinhard Zumkeller, Apr 22 2012
The asymptotic density of the occurrences of 1 in this sequence is density(A068781)/density(A013929) = (1 - 2 * A059956 + A065474)/A229099 = 0.272347... - Amiram Eldar, Mar 09 2021
LINKS
FORMULA
a(n) = A013929(n+1) - A013929(n).
a(n) = 1, 2, 3 or 4 since n = 4*k is always nonsquarefree.
Asymptotic mean: lim_{n->oo} (1/n) Sum_{k=1..n} a(k) = Pi^2/(Pi^2-6) = 2.550546... - Amiram Eldar, Oct 21 2020
EXAMPLE
a(1) = 4 = 8 - 4.
MATHEMATICA
t=Flatten[Position[Table[MoebiusMu[w], {w, 1, 1000}], 0]]; t1=Delete[RotateLeft[t]-t, -1]
Differences[Select[Range[300], !SquareFreeQ[#]&]] (* Harvey P. Dale, May 07 2012 *)
PROG
(Haskell)
a078147 n = a078147_list !! (n-1)
a078147_list = zipWith (-) (tail a013929_list) a013929_list
-- Reinhard Zumkeller, Apr 22 2012
(PARI) lista(nn) = {my(prec=0); for (n=1, nn, if (!issquarefree(n), if (prec, print1(n-prec, ", ")); prec = n; ); ); } \\ Michel Marcus, Mar 26 2020
(Python)
from math import isqrt
from sympy import mobius, factorint
def A078147(n):
def f(x): return n+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
m, k = n, f(n)
while m != k: m, k = k, f(k)
return next(i for i in range(1, 5) if any(d>1 for d in factorint(m+i).values())) # Chai Wah Wu, Sep 10 2024
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Labos Elemer, Nov 26 2002
EXTENSIONS
Offset fixed by Reinhard Zumkeller, Apr 22 2012
STATUS
approved
Numbers k begins a new chain of squarefree integers. I.e., k is squarefree but k-1 is not.
+10
84
1, 5, 10, 13, 17, 19, 21, 26, 29, 33, 37, 41, 46, 51, 53, 55, 57, 61, 65, 69, 73, 77, 82, 85, 89, 91, 93, 97, 101, 105, 109, 113, 118, 122, 127, 129, 133, 137, 141, 145, 149, 151, 154, 157, 161, 163, 165, 170, 173, 177, 181, 185, 190, 193, 197, 199, 201, 205, 209
OFFSET
1,2
COMMENTS
The asymptotic density of this sequence is 1/zeta(2) - Product_{p prime} (1 - 2/p^2) = A059956 - A065474 = 0.2852930029... (Matomäki et al., 2016) - Amiram Eldar, Feb 14 2021
LINKS
Kaisa Matomäki, Maksym Radziwiłł and Terence Tao, Sign patterns of the Liouville and Möbius functions, Forum of Mathematics, Sigma, Vol. 4. (2016), e14.
Eric Weisstein's World of Mathematics, Squarefree.
FORMULA
From Reinhard Zumkeller, Jan 20 2008: (Start)
A136742 mod a(n) = 0;
A136742(n) = Product_{k=0..A120992(n)-1} (a(n) + k);
A136743(n) = Sum_{k=0..A120992(n)-1} A001221(a(n) + k). (End)
EXAMPLE
1 begins a new chain 1, 2, 3 of squarefree integers. 4 is not squarefree. Then 5 begins a new chain 5, 6, 7 of squarefree integers. Hence 1 and 5 are terms of the sequence.
MATHEMATICA
Select[Range[100], MoebiusMu[# - 1] == 0 && Abs[MoebiusMu[#]] == 1 &] (* Amiram Eldar, Feb 14 2021 *)
SequencePosition[Table[If[SquareFreeQ[n], 1, 0], {n, 0, 250}], {0, 1}][[All, 2]]-1 (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 24 2021 *)
PROG
(PARI) n=1; for(k=1, 100, while(!issquarefree(n), n=n+1); print1(n", "); while(issquarefree(n), n=n+1))
KEYWORD
easy,nonn
AUTHOR
Joseph L. Pe, Jul 10 2002
EXTENSIONS
More terms from Ralf Stephan, Mar 19 2003
STATUS
approved

Search completed in 0.084 seconds